[QE-users] Error in routine ylmr2 (15): l too large, or wrong number of Ylm required
Daniel Rothchild
drothchild at berkeley.edu
Tue May 28 01:13:49 CEST 2024
Hi Simon -- there's a thread from ~12 hours ago where someone else
encountered the same error, and I pointed them to this commit:
https://gitlab.com/QEF/q-e/-/commit/c5cfcd9f9cc82e6d7da3329311eeecbc895HiHi04415
<https://gitlab.com/QEF/q-e/-/commit/c5cfcd9f9cc82e6d7da3329311eeecbc89504415>.
Does the fix I proposed in that thread solve your issue?
Daniel
On Mon, May 27, 2024 at 7:29 AM Simon Imanuel Rombauer <
simon.rombauer at student.uni-augsburg.de> wrote:
> Dear QE users,
>
> when I run a scf calculation with a given K_POINTS {tpiba} list obtained
> from kpoints.x, I get the error "Error in routine ylmr2 (15): l too large,
> or wrong number of Ylm required".
> My input file reads:
>
> &CONTROL
> calculation = 'scf'
> outdir = './out/'
> prefix = 'LVO_HP'
> pseudo_dir = '../pseudo/'
> !verbosity = 'high'
> /
>
> &SYSTEM
> ecutrho = 720
> ecutwfc = 90
> ibrav = 8
> celldm(1)=10.580262 !a => alat in a.u
> celldm(2)=1.445544 !=> b/a
> celldm(3)=1.005947 !=> c/a
> nat = 20
> nspin = 2
> ntyp = 4 !4 becasue V1, V2 AFM
> nbnd = 90
> occupations = 'smearing'
> smearing = 'mv'
> degauss = 0.005
> starting_magnetization(1) = 0.01
> starting_magnetization(2) = 0.5
> starting_magnetization(3) = -0.5
> starting_magnetization(4) = 0.01
> /
>
> &ELECTRONS
> conv_thr = 1.0d-08
> electron_maxstep = 500
> mixing_beta = 0.35
> mixing_mode = 'local-TF'
> !startingpot = 'file'
> !startingwfc = 'file'
> /
>
> ATOMIC_SPECIES
> La 138.90547 La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf
> V1 50.9415 v_pbesol_v1.4.uspp.F.UPF
> V2 50.9415 v_pbesol_v1.4.uspp.F.UPF
> O 15.9994 O.pbesol-n-kjpaw_psl.0.1.UPF
>
> ATOMIC_POSITIONS {crystal}
> La 0.0335906495 0.7500000000 0.0054491195
> La 0.4664093505 0.2500000000 0.5054491195
> La 0.9664093505 0.2500000000 0.9945508805
> La 0.5335906495 0.7500000000 0.4945508805
> V1 0.5000000000 0.0000000000 0.0000000000
> V1 0.5000000000 0.5000000000 0.0000000000
> V2 0.0000000000 0.5000000000 0.5000000000
> V2 0.0000000000 0.0000000000 0.5000000000
> O 0.4820465431 0.7500000000 0.9217317548
> O 0.0179534569 0.2500000000 0.4217317548
> O 0.5179534569 0.2500000000 0.0782682452
> O 0.9820465431 0.7500000000 0.5782682452
> O 0.2827146714 0.9564225097 0.2821094459
> O 0.2172853286 0.0435774903 0.7821094459
> O 0.7172853286 0.4564225097 0.7178905541
> O 0.7827146714 0.5435774903 0.2178905541
> O 0.7172853286 0.0435774903 0.7178905541
> O 0.7827146714 0.9564225097 0.2178905541
> O 0.2827146714 0.5435774903 0.2821094459
> O 0.2172853286 0.4564225097 0.7821094459
>
> K_POINTS {tpiba}
> 18
> 0.0000000 0.0000000 0.0000000 1.00
> 0.2500000 0.0000000 0.0000000 2.00
> 0.5000000 0.0000000 0.0000000 1.00
> 0.0000000 0.2305937 0.0000000 2.00
> 0.2500000 0.2305937 0.0000000 4.00
> 0.5000000 0.2305937 0.0000000 2.00
> 0.0000000 0.0000000 0.2485220 2.00
> 0.2500000 0.0000000 0.2485220 4.00
> 0.5000000 0.0000000 0.2485220 2.00
> 0.0000000 0.2305937 0.2485220 4.00
> 0.2500000 0.2305937 0.2485220 8.00
> 0.5000000 0.2305937 0.2485220 4.00
> 0.0000000 0.0000000 0.4970441 1.00
> 0.2500000 0.0000000 0.4970441 2.00
> 0.5000000 0.0000000 0.4970441 1.00
> 0.0000000 0.2305937 0.4970441 2.00
> 0.2500000 0.2305937 0.4970441 4.00
> 0.5000000 0.2305937 0.4970441 2.00
>
> HUBBARD {ortho-atomic}
> V La-4f La-4f 1 1 5.0
> V La-4f La-4f 2 2 5.0
> V La-4f La-4f 3 3 5.0
> V La-4f La-4f 4 4 5.0
> V V1-3d V1-3d 5 5 2.7
> V V1-3d V1-3d 6 6 2.7
> V V2-3d V2-3d 7 7 2.7
> V V2-3d V2-3d 8 8 2.7
>
>
> The output file:
>
> Program PWSCF v.7.3.1 starts on 27May2024 at 16:12:53
>
> This program is part of the open-source Quantum ESPRESSO suite
> for quantum simulation of materials; please cite
> "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
> "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
> "P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
> URL http://www.quantum-espresso.org",
> in publications or presentations arising from this work. More details
> at
> http://www.quantum-espresso.org/quote
>
> Parallel version (MPI & OpenMP), running on 64 processor cores
> Number of MPI processes: 64
> Threads/MPI process: 1
>
> MPI processes distributed on 1 nodes
> 1010768 MiB available memory on the printing compute node when the
> environment starts
>
> Waiting for input...
> Reading input from standard input
>
> Current dimensions of program PWSCF are:
> Max number of different atomic species (ntypx) = 10
> Max number of k-points (npk) = 40000
> Max angular momentum in pseudopotentials (lmaxx) = 4
> file La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf:
> wavefunction(s) 6S 0P 5D 0D 4F 0F renormalized
> file O.pbesol-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P renormalized
> First shells distances (in Bohr):
> shell: 1 0.000000
> shell: 2 4.579154
> shell: 3 4.703718
> shell: 4 4.827718
> shell: 5 5.058152
> shell: 6 5.439501
> shell: 7 5.903114
>
> i j dist (Bohr) stan-stan stan-bac bac-bac bac-stan
> 1 1 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
> 2 2 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
> 3 3 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
> 4 4 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
> 5 5 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
> 6 6 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
> 7 7 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
> 8 8 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
> 9 9 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 10 10 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 11 11 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 12 12 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 13 13 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 14 14 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 15 15 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 16 16 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 17 17 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 18 18 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 19 19 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
> 20 20 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
>
> K-points division: npool = 4
> R & G space division: proc/nbgrp/npool/nimage = 16
> Subspace diagonalization in iterative solution of the eigenvalue
> problem:
> a serial algorithm will be used
>
> Parallelization info
> --------------------
> sticks: dense smooth PW G-vecs: dense smooth PW
> Min 580 289 79 35128 12413 1779
> Max 581 290 80 35131 12416 1782
> Sum 9289 4631 1269 562059 198631 28477
>
> Using Slab Decomposition
>
> bravais-lattice index = 8
> lattice parameter (alat) = 10.5803 a.u.
> unit-cell volume = 1722.2480 (a.u.)^3
> number of atoms/cell = 20
> number of atomic types = 4
> number of electrons = 168.00
> number of Kohn-Sham states= 90
> kinetic-energy cutoff = 90.0000 Ry
> charge density cutoff = 720.0000 Ry
> scf convergence threshold = 1.0E-08
> mixing beta = 0.3500
> number of iterations used = 8 local-TF mixing
> Exchange-correlation= SLA PW PSX PSC
> ( 1 4 10 8 0 0 0)
> Hubbard projectors: ortho-atomic
>
> Internal variables: lda_plus_u = T, lda_plus_u_kind = 2
>
> celldm(1)= 10.580262 celldm(2)= 1.445544 celldm(3)= 1.005947
> celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
>
> crystal axes: (cart. coord. in units of alat)
> a(1) = ( 1.000000 0.000000 0.000000 )
> a(2) = ( 0.000000 1.445544 0.000000 )
> a(3) = ( 0.000000 0.000000 1.005947 )
>
> reciprocal axes: (cart. coord. in units 2 pi/alat)
> b(1) = ( 1.000000 0.000000 0.000000 )
> b(2) = ( 0.000000 0.691781 0.000000 )
> b(3) = ( 0.000000 0.000000 0.994088 )
>
> PseudoPot. # 1 for La read from file:
> ../pseudo/La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf
> MD5 check sum: 892fbf3b9b92b8b1c6aefb7cb3dda382
> Pseudo is Projector augmented-wave + core cor, Zval = 11.0
> Generated using ATOMPAW code
> Shape of augmentation charge: BESSEL
> Using radial grid of 1101 points, 8 beta functions with:
> l(1) = 0
> l(2) = 0
> l(3) = 1
> l(4) = 1
> l(5) = 2
> l(6) = 2
> l(7) = 3
> l(8) = 3
> Q(r) pseudized with 0 coefficients
>
> PseudoPot. # 2 for V read from file:
> ../pseudo/v_pbesol_v1.4.uspp.F.UPF
> MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9
> Pseudo is Ultrasoft + core correction, Zval = 13.0
> Generated by new atomic code, or converted to UPF format
> Using radial grid of 853 points, 6 beta functions with:
> l(1) = 0
> l(2) = 0
> l(3) = 1
> l(4) = 1
> l(5) = 2
> l(6) = 2
> Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100
> 1.100
> 1.100 1.100
>
> PseudoPot. # 3 for V read from file:
> ../pseudo/v_pbesol_v1.4.uspp.F.UPF
> MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9
> Pseudo is Ultrasoft + core correction, Zval = 13.0
> Generated by new atomic code, or converted to UPF format
> Using radial grid of 853 points, 6 beta functions with:
> l(1) = 0
> l(2) = 0
> l(3) = 1
> l(4) = 1
> l(5) = 2
> l(6) = 2
> Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100
> 1.100
> 1.100 1.100
>
> PseudoPot. # 4 for O read from file:
> ../pseudo/O.pbesol-n-kjpaw_psl.0.1.UPF
> MD5 check sum: 81d73d1479e654e5638b0319f0d6c2c7
> Pseudo is Projector augmented-wave + core cor, Zval = 6.0
> Generated using "atomic" code by A. Dal Corso v.6.0 svn rev. 13079
> Shape of augmentation charge: BESSEL
> Using radial grid of 1095 points, 4 beta functions with:
> l(1) = 0
> l(2) = 0
> l(3) = 1
> l(4) = 1
> Q(r) pseudized with 0 coefficients
>
> atomic species valence mass pseudopotential
> La 11.00 138.90547 La( 1.00)
> V1 13.00 50.94150 V ( 1.00)
> V2 13.00 50.94150 V ( 1.00)
> O 6.00 15.99940 O ( 1.00)
>
> Starting magnetic structure
> atomic species magnetization
> La 0.010
> V1 0.500
> V2 -0.500
> O 0.010
>
> 4 Sym. Ops., with inversion, found ( 2 have fractional translation)
>
> s frac. trans.
>
> isym = 1 identity
>
> cryst. s( 1) = ( 1 0 0 )
> ( 0 1 0 )
> ( 0 0 1 )
>
> cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
> ( 0.0000000 1.0000000 0.0000000 )
> ( 0.0000000 0.0000000 1.0000000 )
>
> isym = 2 180 deg rotation - cart. axis [0,1,0]
>
> cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 )
> ( 0 1 0 ) ( -0.5000000 )
> ( 0 0 -1 ) ( 0.0000000 )
>
> cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )
> ( 0.0000000 1.0000000 0.0000000 ) ( -0.7227720 )
> ( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
>
> isym = 3 inversion
>
> cryst. s( 3) = ( -1 0 0 )
> ( 0 -1 0 )
> ( 0 0 -1 )
>
> cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
> ( 0.0000000 -1.0000000 0.0000000 )
> ( 0.0000000 0.0000000 -1.0000000 )
>
> isym = 4 inv. 180 deg rotation - cart. axis [0,1,0]
>
> cryst. s( 4) = ( 1 0 0 ) f =( 0.0000000 )
> ( 0 -1 0 ) ( -0.5000000 )
> ( 0 0 1 ) ( 0.0000000 )
>
> cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )
> ( 0.0000000 -1.0000000 0.0000000 ) ( -0.7227720 )
> ( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
>
> point group C_2h (2/m)
> there are 4 classes
> the character table:
>
> E C2 i s_h
> A_g 1.00 1.00 1.00 1.00
> B_g 1.00 -1.00 1.00 -1.00
> A_u 1.00 1.00 -1.00 -1.00
> B_u 1.00 -1.00 -1.00 1.00
>
> the symmetry operations in each class and the name of the first
> element:
>
> E 1
> identity
> C2 2
> 180 deg rotation - cart. axis [0,1,0]
> i 3
> inversion
> s_h 4
> inv. 180 deg rotation - cart. axis [0,1,0]
>
> Cartesian axes
>
> site n. atom positions (alat units)
> 1 La tau( 1) = ( 0.0335906 1.0841580
> 0.0054815 )
> 2 La tau( 2) = ( 0.4664094 0.3613860
> 0.5084550 )
> 3 La tau( 3) = ( 0.9664094 0.3613860
> 1.0004655 )
> 4 La tau( 4) = ( 0.5335906 1.0841580
> 0.4974920 )
> 5 V1 tau( 5) = ( 0.5000000 0.0000000
> 0.0000000 )
> 6 V1 tau( 6) = ( 0.5000000 0.7227720
> 0.0000000 )
> 7 V2 tau( 7) = ( 0.0000000 0.7227720
> 0.5029735 )
> 8 V2 tau( 8) = ( 0.0000000 0.0000000
> 0.5029735 )
> 9 O tau( 9) = ( 0.4820465 1.0841580
> 0.9272133 )
> 10 O tau( 10) = ( 0.0179535 0.3613860
> 0.4242398 )
> 11 O tau( 11) = ( 0.5179535 0.3613860
> 0.0787337 )
> 12 O tau( 12) = ( 0.9820465 1.0841580
> 0.5817072 )
> 13 O tau( 13) = ( 0.2827147 1.3825508
> 0.2837872 )
> 14 O tau( 14) = ( 0.2172853 0.0629932
> 0.7867607 )
> 15 O tau( 15) = ( 0.7172853 0.6597788
> 0.7221598 )
> 16 O tau( 16) = ( 0.7827147 0.7857652
> 0.2191863 )
> 17 O tau( 17) = ( 0.7172853 0.0629932
> 0.7221598 )
> 18 O tau( 18) = ( 0.7827147 1.3825508
> 0.2191863 )
> 19 O tau( 19) = ( 0.2827147 0.7857652
> 0.2837872 )
> 20 O tau( 20) = ( 0.2172853 0.6597788
> 0.7867607 )
>
> Crystallographic axes
>
> site n. atom positions (cryst. coord.)
> 1 La tau( 1) = ( 0.0335906 0.7500000 0.0054491 )
> 2 La tau( 2) = ( 0.4664094 0.2500000 0.5054491 )
> 3 La tau( 3) = ( 0.9664094 0.2500000 0.9945509 )
> 4 La tau( 4) = ( 0.5335906 0.7500000 0.4945509 )
> 5 V1 tau( 5) = ( 0.5000000 0.0000000 0.0000000 )
> 6 V1 tau( 6) = ( 0.5000000 0.5000000 0.0000000 )
> 7 V2 tau( 7) = ( 0.0000000 0.5000000 0.5000000 )
> 8 V2 tau( 8) = ( 0.0000000 0.0000000 0.5000000 )
> 9 O tau( 9) = ( 0.4820465 0.7500000 0.9217318 )
> 10 O tau( 10) = ( 0.0179535 0.2500000 0.4217318 )
> 11 O tau( 11) = ( 0.5179535 0.2500000 0.0782682 )
> 12 O tau( 12) = ( 0.9820465 0.7500000 0.5782682 )
> 13 O tau( 13) = ( 0.2827147 0.9564225 0.2821094 )
> 14 O tau( 14) = ( 0.2172853 0.0435775 0.7821094 )
> 15 O tau( 15) = ( 0.7172853 0.4564225 0.7178906 )
> 16 O tau( 16) = ( 0.7827147 0.5435775 0.2178906 )
> 17 O tau( 17) = ( 0.7172853 0.0435775 0.7178906 )
> 18 O tau( 18) = ( 0.7827147 0.9564225 0.2178906 )
> 19 O tau( 19) = ( 0.2827147 0.5435775 0.2821094 )
> 20 O tau( 20) = ( 0.2172853 0.4564225 0.7821094 )
>
> number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)=
> 0.0050
> cart. coord. in units 2pi/alat
> k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333
> k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667
> k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333
> k( 4) = ( 0.0000000 0.2305937 0.0000000), wk = 0.0416667
> k( 5) = ( 0.2500000 0.2305937 0.0000000), wk = 0.0833333
> k( 6) = ( 0.5000000 0.2305937 0.0000000), wk = 0.0416667
> k( 7) = ( 0.0000000 0.0000000 0.2485220), wk = 0.0416667
> k( 8) = ( 0.2500000 0.0000000 0.2485220), wk = 0.0416667
> k( 9) = ( 0.5000000 0.0000000 0.2485220), wk = 0.0416667
> k( 10) = ( 0.0000000 0.2305937 0.2485220), wk = 0.0833333
> k( 11) = ( 0.2500000 0.2305937 0.2485220), wk = 0.0833333
> k( 12) = ( 0.5000000 0.2305937 0.2485220), wk = 0.0833333
> k( 13) = ( 0.0000000 0.0000000 0.4970441), wk = 0.0208333
> k( 14) = ( 0.2500000 0.0000000 0.4970441), wk = 0.0416667
> k( 15) = ( 0.5000000 0.0000000 0.4970441), wk = 0.0208333
> k( 16) = ( 0.0000000 0.2305937 0.4970441), wk = 0.0416667
> k( 17) = ( 0.2500000 0.2305937 0.4970441), wk = 0.0833333
> k( 18) = ( 0.5000000 0.2305937 0.4970441), wk = 0.0416667
> k( 19) = ( -0.2500000 0.0000000 0.2485220), wk = 0.0416667
> k( 20) = ( -0.2500000 -0.2305937 0.2485220), wk = 0.0833333
>
> cryst. coord.
> k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333
> k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667
> k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333
> k( 4) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0416667
> k( 5) = ( 0.2500000 0.3333333 0.0000000), wk = 0.0833333
> k( 6) = ( 0.5000000 0.3333333 0.0000000), wk = 0.0416667
> k( 7) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0416667
> k( 8) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0416667
> k( 9) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0416667
> k( 10) = ( 0.0000000 0.3333333 0.2500000), wk = 0.0833333
> k( 11) = ( 0.2500000 0.3333333 0.2500000), wk = 0.0833333
> k( 12) = ( 0.5000000 0.3333333 0.2500000), wk = 0.0833333
> k( 13) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0208333
> k( 14) = ( 0.2500000 0.0000000 0.5000000), wk = 0.0416667
> k( 15) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0208333
> k( 16) = ( 0.0000000 0.3333333 0.5000000), wk = 0.0416667
> k( 17) = ( 0.2500000 0.3333333 0.5000000), wk = 0.0833333
> k( 18) = ( 0.5000000 0.3333333 0.5000000), wk = 0.0416667
> k( 19) = ( -0.2500000 0.0000000 0.2500000), wk = 0.0416667
> k( 20) = ( -0.2500000 -0.3333333 0.2500000), wk = 0.0833333
>
> Dense grid: 562059 G-vectors FFT dimensions: ( 96, 144, 96)
>
> Smooth grid: 198631 G-vectors FFT dimensions: ( 64, 96, 72)
>
> Dynamical RAM for wfc: 2.13 MB
> Dynamical RAM for wfc (w. buffer): 23.44 MB
> Dynamical RAM for U proj.: 1.14 MB
> Dynamical RAM for U proj. (w. buff.): 12.50 MB
> Dynamical RAM for str. fact: 2.14 MB
> Dynamical RAM for local pot: 0.00 MB
> Dynamical RAM for nlocal pot: 7.01 MB
> Dynamical RAM for qrad: 20.66 MB
> Dynamical RAM for rho,v,vnew: 7.01 MB
> Dynamical RAM for rhoin: 2.34 MB
> Dynamical RAM for rho*nmix: 17.15 MB
> Dynamical RAM for G-vectors: 2.10 MB
> Dynamical RAM for h,s,v(r/c): 1.48 MB
> Dynamical RAM for <psi|beta>: 0.41 MB
> Dynamical RAM for psi: 4.26 MB
> Dynamical RAM for hpsi: 4.26 MB
> Dynamical RAM for spsi: 4.26 MB
> Dynamical RAM for wfcinit/wfcrot: 11.30 MB
> Dynamical RAM for addusdens: 76.92 MB
> Estimated static dynamical RAM per process > 83.70 MB
> Estimated max dynamical RAM per process > 177.77 MB
> Estimated total dynamical RAM > 10.31 GB
>
>
> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
> Error in routine ylmr2 (15):
> l too large, or wrong number of Ylm required
>
> %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
>
> stopping ...
>
> ...and so on for the other parallel jobs...
>
> Any idea what this errors indicates to? I never have seen this error when
> doing the same with K_POINTS {automatic}, ibrav = 0 and providing
> CELL_PARAMETERS directly.
>
> Thank you and best regards,
> Simon Rombauer
> Experimentalphysik IV
> University Augsburg
> Germany
>
> _______________________________________________
> The Quantum ESPRESSO community stands by the Ukrainian
> people and expresses its concerns about the devastating
> effects that the Russian military offensive has on their
> country and on the free and peaceful scientific, cultural,
> and economic cooperation amongst peoples
> _______________________________________________
> Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> users mailing list users at lists.quantum-espresso.org
> https://lists.quantum-espresso.org/mailman/listinfo/users
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20240527/94bcec71/attachment.html>
More information about the users
mailing list