<div dir="ltr"><div>Hi Simon -- there's a thread from ~12 hours ago where someone else encountered the same error, and I pointed them to this commit: <a href="https://gitlab.com/QEF/q-e/-/commit/c5cfcd9f9cc82e6d7da3329311eeecbc89504415" target="_blank">https://gitlab.com/QEF/q-e/-/commit/c5cfcd9f9cc82e6d7da3329311eeecbc895HiHi04415</a>. Does the fix I proposed in that thread solve your issue?<br></div><div><br></div><div>Daniel<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, May 27, 2024 at 7:29 AM Simon Imanuel Rombauer <<a href="mailto:simon.rombauer@student.uni-augsburg.de" target="_blank">simon.rombauer@student.uni-augsburg.de</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear QE users,<br>
<br>
when I run a scf calculation with a given K_POINTS {tpiba} list obtained from kpoints.x, I get the error "Error in routine ylmr2 (15): l too large, or wrong number of Ylm required". <br>
My input file reads:<br>
<br>
&CONTROL<br>
calculation = 'scf'<br>
outdir = './out/'<br>
prefix = 'LVO_HP' <br>
pseudo_dir = '../pseudo/'<br>
!verbosity = 'high'<br>
/<br>
<br>
&SYSTEM<br>
ecutrho = 720<br>
ecutwfc = 90<br>
ibrav = 8<br>
celldm(1)=10.580262 !a => alat in a.u<br>
celldm(2)=1.445544 !=> b/a<br>
celldm(3)=1.005947 !=> c/a<br>
nat = 20<br>
nspin = 2<br>
ntyp = 4 !4 becasue V1, V2 AFM <br>
nbnd = 90<br>
occupations = 'smearing'<br>
smearing = 'mv'<br>
degauss = 0.005<br>
starting_magnetization(1) = 0.01<br>
starting_magnetization(2) = 0.5<br>
starting_magnetization(3) = -0.5<br>
starting_magnetization(4) = 0.01<br>
/<br>
<br>
&ELECTRONS<br>
conv_thr = 1.0d-08<br>
electron_maxstep = 500<br>
mixing_beta = 0.35<br>
mixing_mode = 'local-TF'<br>
!startingpot = 'file'<br>
!startingwfc = 'file'<br>
/<br>
<br>
ATOMIC_SPECIES<br>
La 138.90547 La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf <br>
V1 50.9415 v_pbesol_v1.4.uspp.F.UPF<br>
V2 50.9415 v_pbesol_v1.4.uspp.F.UPF<br>
O 15.9994 O.pbesol-n-kjpaw_psl.0.1.UPF<br>
<br>
ATOMIC_POSITIONS {crystal}<br>
La 0.0335906495 0.7500000000 0.0054491195 <br>
La 0.4664093505 0.2500000000 0.5054491195 <br>
La 0.9664093505 0.2500000000 0.9945508805 <br>
La 0.5335906495 0.7500000000 0.4945508805 <br>
V1 0.5000000000 0.0000000000 0.0000000000 <br>
V1 0.5000000000 0.5000000000 0.0000000000 <br>
V2 0.0000000000 0.5000000000 0.5000000000<br>
V2 0.0000000000 0.0000000000 0.5000000000 <br>
O 0.4820465431 0.7500000000 0.9217317548 <br>
O 0.0179534569 0.2500000000 0.4217317548 <br>
O 0.5179534569 0.2500000000 0.0782682452 <br>
O 0.9820465431 0.7500000000 0.5782682452 <br>
O 0.2827146714 0.9564225097 0.2821094459 <br>
O 0.2172853286 0.0435774903 0.7821094459 <br>
O 0.7172853286 0.4564225097 0.7178905541 <br>
O 0.7827146714 0.5435774903 0.2178905541 <br>
O 0.7172853286 0.0435774903 0.7178905541 <br>
O 0.7827146714 0.9564225097 0.2178905541 <br>
O 0.2827146714 0.5435774903 0.2821094459 <br>
O 0.2172853286 0.4564225097 0.7821094459 <br>
<br>
K_POINTS {tpiba}<br>
18<br>
0.0000000 0.0000000 0.0000000 1.00<br>
0.2500000 0.0000000 0.0000000 2.00<br>
0.5000000 0.0000000 0.0000000 1.00<br>
0.0000000 0.2305937 0.0000000 2.00<br>
0.2500000 0.2305937 0.0000000 4.00<br>
0.5000000 0.2305937 0.0000000 2.00<br>
0.0000000 0.0000000 0.2485220 2.00<br>
0.2500000 0.0000000 0.2485220 4.00<br>
0.5000000 0.0000000 0.2485220 2.00<br>
0.0000000 0.2305937 0.2485220 4.00<br>
0.2500000 0.2305937 0.2485220 8.00<br>
0.5000000 0.2305937 0.2485220 4.00<br>
0.0000000 0.0000000 0.4970441 1.00<br>
0.2500000 0.0000000 0.4970441 2.00<br>
0.5000000 0.0000000 0.4970441 1.00<br>
0.0000000 0.2305937 0.4970441 2.00<br>
0.2500000 0.2305937 0.4970441 4.00<br>
0.5000000 0.2305937 0.4970441 2.00<br>
<br>
HUBBARD {ortho-atomic}<br>
V La-4f La-4f 1 1 5.0<br>
V La-4f La-4f 2 2 5.0<br>
V La-4f La-4f 3 3 5.0<br>
V La-4f La-4f 4 4 5.0<br>
V V1-3d V1-3d 5 5 2.7<br>
V V1-3d V1-3d 6 6 2.7<br>
V V2-3d V2-3d 7 7 2.7<br>
V V2-3d V2-3d 8 8 2.7<br>
<br>
<br>
The output file:<br>
<br>
Program PWSCF v.7.3.1 starts on 27May2024 at 16:12:53 <br>
<br>
This program is part of the open-source Quantum ESPRESSO suite<br>
for quantum simulation of materials; please cite<br>
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);<br>
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);<br>
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);<br>
URL <a href="http://www.quantum-espresso.org" rel="noreferrer" target="_blank">http://www.quantum-espresso.org</a>", <br>
in publications or presentations arising from this work. More details at<br>
<a href="http://www.quantum-espresso.org/quote" rel="noreferrer" target="_blank">http://www.quantum-espresso.org/quote</a><br>
<br>
Parallel version (MPI & OpenMP), running on 64 processor cores<br>
Number of MPI processes: 64<br>
Threads/MPI process: 1<br>
<br>
MPI processes distributed on 1 nodes<br>
1010768 MiB available memory on the printing compute node when the environment starts<br>
<br>
Waiting for input...<br>
Reading input from standard input<br>
<br>
Current dimensions of program PWSCF are:<br>
Max number of different atomic species (ntypx) = 10<br>
Max number of k-points (npk) = 40000<br>
Max angular momentum in pseudopotentials (lmaxx) = 4<br>
file La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf: wavefunction(s) 6S 0P 5D 0D 4F 0F renormalized<br>
file O.pbesol-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P renormalized<br>
First shells distances (in Bohr):<br>
shell: 1 0.000000<br>
shell: 2 4.579154<br>
shell: 3 4.703718<br>
shell: 4 4.827718<br>
shell: 5 5.058152<br>
shell: 6 5.439501<br>
shell: 7 5.903114<br>
<br>
i j dist (Bohr) stan-stan stan-bac bac-bac bac-stan<br>
1 1 0.00000000 V = 5.0000 0.0000 0.0000 0.0000<br>
2 2 0.00000000 V = 5.0000 0.0000 0.0000 0.0000<br>
3 3 0.00000000 V = 5.0000 0.0000 0.0000 0.0000<br>
4 4 0.00000000 V = 5.0000 0.0000 0.0000 0.0000<br>
5 5 0.00000000 V = 2.7000 0.0000 0.0000 0.0000<br>
6 6 0.00000000 V = 2.7000 0.0000 0.0000 0.0000<br>
7 7 0.00000000 V = 2.7000 0.0000 0.0000 0.0000<br>
8 8 0.00000000 V = 2.7000 0.0000 0.0000 0.0000<br>
9 9 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
10 10 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
11 11 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
12 12 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
13 13 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
14 14 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
15 15 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
16 16 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
17 17 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
18 18 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
19 19 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
20 20 0.00000000 V = 0.0000 0.0000 0.0000 0.0000<br>
<br>
K-points division: npool = 4<br>
R & G space division: proc/nbgrp/npool/nimage = 16<br>
Subspace diagonalization in iterative solution of the eigenvalue problem:<br>
a serial algorithm will be used<br>
<br>
Parallelization info<br>
--------------------<br>
sticks: dense smooth PW G-vecs: dense smooth PW<br>
Min 580 289 79 35128 12413 1779<br>
Max 581 290 80 35131 12416 1782<br>
Sum 9289 4631 1269 562059 198631 28477<br>
<br>
Using Slab Decomposition<br>
<br>
bravais-lattice index = 8<br>
lattice parameter (alat) = 10.5803 a.u.<br>
unit-cell volume = 1722.2480 (a.u.)^3<br>
number of atoms/cell = 20<br>
number of atomic types = 4<br>
number of electrons = 168.00<br>
number of Kohn-Sham states= 90<br>
kinetic-energy cutoff = 90.0000 Ry<br>
charge density cutoff = 720.0000 Ry<br>
scf convergence threshold = 1.0E-08<br>
mixing beta = 0.3500<br>
number of iterations used = 8 local-TF mixing<br>
Exchange-correlation= SLA PW PSX PSC<br>
( 1 4 10 8 0 0 0)<br>
Hubbard projectors: ortho-atomic<br>
<br>
Internal variables: lda_plus_u = T, lda_plus_u_kind = 2<br>
<br>
celldm(1)= 10.580262 celldm(2)= 1.445544 celldm(3)= 1.005947<br>
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000<br>
<br>
crystal axes: (cart. coord. in units of alat)<br>
a(1) = ( 1.000000 0.000000 0.000000 ) <br>
a(2) = ( 0.000000 1.445544 0.000000 ) <br>
a(3) = ( 0.000000 0.000000 1.005947 ) <br>
<br>
reciprocal axes: (cart. coord. in units 2 pi/alat)<br>
b(1) = ( 1.000000 0.000000 0.000000 ) <br>
b(2) = ( 0.000000 0.691781 0.000000 ) <br>
b(3) = ( 0.000000 0.000000 0.994088 ) <br>
<br>
PseudoPot. # 1 for La read from file:<br>
../pseudo/La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf<br>
MD5 check sum: 892fbf3b9b92b8b1c6aefb7cb3dda382<br>
Pseudo is Projector augmented-wave + core cor, Zval = 11.0<br>
Generated using ATOMPAW code<br>
Shape of augmentation charge: BESSEL<br>
Using radial grid of 1101 points, 8 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
l(7) = 3<br>
l(8) = 3<br>
Q(r) pseudized with 0 coefficients <br>
<br>
PseudoPot. # 2 for V read from file:<br>
../pseudo/v_pbesol_v1.4.uspp.F.UPF<br>
MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9<br>
Pseudo is Ultrasoft + core correction, Zval = 13.0<br>
Generated by new atomic code, or converted to UPF format<br>
Using radial grid of 853 points, 6 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100 1.100<br>
1.100 1.100<br>
<br>
PseudoPot. # 3 for V read from file:<br>
../pseudo/v_pbesol_v1.4.uspp.F.UPF<br>
MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9<br>
Pseudo is Ultrasoft + core correction, Zval = 13.0<br>
Generated by new atomic code, or converted to UPF format<br>
Using radial grid of 853 points, 6 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100 1.100<br>
1.100 1.100<br>
<br>
PseudoPot. # 4 for O read from file:<br>
../pseudo/O.pbesol-n-kjpaw_psl.0.1.UPF<br>
MD5 check sum: 81d73d1479e654e5638b0319f0d6c2c7<br>
Pseudo is Projector augmented-wave + core cor, Zval = 6.0<br>
Generated using "atomic" code by A. Dal Corso v.6.0 svn rev. 13079<br>
Shape of augmentation charge: BESSEL<br>
Using radial grid of 1095 points, 4 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
Q(r) pseudized with 0 coefficients <br>
<br>
atomic species valence mass pseudopotential<br>
La 11.00 138.90547 La( 1.00)<br>
V1 13.00 50.94150 V ( 1.00)<br>
V2 13.00 50.94150 V ( 1.00)<br>
O 6.00 15.99940 O ( 1.00)<br>
<br>
Starting magnetic structure <br>
atomic species magnetization<br>
La 0.010<br>
V1 0.500<br>
V2 -0.500<br>
O 0.010<br>
<br>
4 Sym. Ops., with inversion, found ( 2 have fractional translation)<br>
<br>
s frac. trans.<br>
<br>
isym = 1 identity <br>
<br>
cryst. s( 1) = ( 1 0 0 )<br>
( 0 1 0 )<br>
( 0 0 1 )<br>
<br>
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )<br>
( 0.0000000 1.0000000 0.0000000 )<br>
( 0.0000000 0.0000000 1.0000000 )<br>
<br>
isym = 2 180 deg rotation - cart. axis [0,1,0] <br>
<br>
cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 )<br>
( 0 1 0 ) ( -0.5000000 )<br>
( 0 0 -1 ) ( 0.0000000 )<br>
<br>
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )<br>
( 0.0000000 1.0000000 0.0000000 ) ( -0.7227720 )<br>
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )<br>
<br>
isym = 3 inversion <br>
<br>
cryst. s( 3) = ( -1 0 0 )<br>
( 0 -1 0 )<br>
( 0 0 -1 )<br>
<br>
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )<br>
( 0.0000000 -1.0000000 0.0000000 )<br>
( 0.0000000 0.0000000 -1.0000000 )<br>
<br>
isym = 4 inv. 180 deg rotation - cart. axis [0,1,0] <br>
<br>
cryst. s( 4) = ( 1 0 0 ) f =( 0.0000000 )<br>
( 0 -1 0 ) ( -0.5000000 )<br>
( 0 0 1 ) ( 0.0000000 )<br>
<br>
cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )<br>
( 0.0000000 -1.0000000 0.0000000 ) ( -0.7227720 )<br>
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )<br>
<br>
point group C_2h (2/m) <br>
there are 4 classes<br>
the character table:<br>
<br>
E C2 i s_h <br>
A_g 1.00 1.00 1.00 1.00<br>
B_g 1.00 -1.00 1.00 -1.00<br>
A_u 1.00 1.00 -1.00 -1.00<br>
B_u 1.00 -1.00 -1.00 1.00<br>
<br>
the symmetry operations in each class and the name of the first element:<br>
<br>
E 1<br>
identity <br>
C2 2<br>
180 deg rotation - cart. axis [0,1,0] <br>
i 3<br>
inversion <br>
s_h 4<br>
inv. 180 deg rotation - cart. axis [0,1,0] <br>
<br>
Cartesian axes<br>
<br>
site n. atom positions (alat units)<br>
1 La tau( 1) = ( 0.0335906 1.0841580 0.0054815 )<br>
2 La tau( 2) = ( 0.4664094 0.3613860 0.5084550 )<br>
3 La tau( 3) = ( 0.9664094 0.3613860 1.0004655 )<br>
4 La tau( 4) = ( 0.5335906 1.0841580 0.4974920 )<br>
5 V1 tau( 5) = ( 0.5000000 0.0000000 0.0000000 )<br>
6 V1 tau( 6) = ( 0.5000000 0.7227720 0.0000000 )<br>
7 V2 tau( 7) = ( 0.0000000 0.7227720 0.5029735 )<br>
8 V2 tau( 8) = ( 0.0000000 0.0000000 0.5029735 )<br>
9 O tau( 9) = ( 0.4820465 1.0841580 0.9272133 )<br>
10 O tau( 10) = ( 0.0179535 0.3613860 0.4242398 )<br>
11 O tau( 11) = ( 0.5179535 0.3613860 0.0787337 )<br>
12 O tau( 12) = ( 0.9820465 1.0841580 0.5817072 )<br>
13 O tau( 13) = ( 0.2827147 1.3825508 0.2837872 )<br>
14 O tau( 14) = ( 0.2172853 0.0629932 0.7867607 )<br>
15 O tau( 15) = ( 0.7172853 0.6597788 0.7221598 )<br>
16 O tau( 16) = ( 0.7827147 0.7857652 0.2191863 )<br>
17 O tau( 17) = ( 0.7172853 0.0629932 0.7221598 )<br>
18 O tau( 18) = ( 0.7827147 1.3825508 0.2191863 )<br>
19 O tau( 19) = ( 0.2827147 0.7857652 0.2837872 )<br>
20 O tau( 20) = ( 0.2172853 0.6597788 0.7867607 )<br>
<br>
Crystallographic axes<br>
<br>
site n. atom positions (cryst. coord.)<br>
1 La tau( 1) = ( 0.0335906 0.7500000 0.0054491 )<br>
2 La tau( 2) = ( 0.4664094 0.2500000 0.5054491 )<br>
3 La tau( 3) = ( 0.9664094 0.2500000 0.9945509 )<br>
4 La tau( 4) = ( 0.5335906 0.7500000 0.4945509 )<br>
5 V1 tau( 5) = ( 0.5000000 0.0000000 0.0000000 )<br>
6 V1 tau( 6) = ( 0.5000000 0.5000000 0.0000000 )<br>
7 V2 tau( 7) = ( 0.0000000 0.5000000 0.5000000 )<br>
8 V2 tau( 8) = ( 0.0000000 0.0000000 0.5000000 )<br>
9 O tau( 9) = ( 0.4820465 0.7500000 0.9217318 )<br>
10 O tau( 10) = ( 0.0179535 0.2500000 0.4217318 )<br>
11 O tau( 11) = ( 0.5179535 0.2500000 0.0782682 )<br>
12 O tau( 12) = ( 0.9820465 0.7500000 0.5782682 )<br>
13 O tau( 13) = ( 0.2827147 0.9564225 0.2821094 )<br>
14 O tau( 14) = ( 0.2172853 0.0435775 0.7821094 )<br>
15 O tau( 15) = ( 0.7172853 0.4564225 0.7178906 )<br>
16 O tau( 16) = ( 0.7827147 0.5435775 0.2178906 )<br>
17 O tau( 17) = ( 0.7172853 0.0435775 0.7178906 )<br>
18 O tau( 18) = ( 0.7827147 0.9564225 0.2178906 )<br>
19 O tau( 19) = ( 0.2827147 0.5435775 0.2821094 )<br>
20 O tau( 20) = ( 0.2172853 0.4564225 0.7821094 )<br>
<br>
number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0050<br>
cart. coord. in units 2pi/alat<br>
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333<br>
k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667<br>
k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333<br>
k( 4) = ( 0.0000000 0.2305937 0.0000000), wk = 0.0416667<br>
k( 5) = ( 0.2500000 0.2305937 0.0000000), wk = 0.0833333<br>
k( 6) = ( 0.5000000 0.2305937 0.0000000), wk = 0.0416667<br>
k( 7) = ( 0.0000000 0.0000000 0.2485220), wk = 0.0416667<br>
k( 8) = ( 0.2500000 0.0000000 0.2485220), wk = 0.0416667<br>
k( 9) = ( 0.5000000 0.0000000 0.2485220), wk = 0.0416667<br>
k( 10) = ( 0.0000000 0.2305937 0.2485220), wk = 0.0833333<br>
k( 11) = ( 0.2500000 0.2305937 0.2485220), wk = 0.0833333<br>
k( 12) = ( 0.5000000 0.2305937 0.2485220), wk = 0.0833333<br>
k( 13) = ( 0.0000000 0.0000000 0.4970441), wk = 0.0208333<br>
k( 14) = ( 0.2500000 0.0000000 0.4970441), wk = 0.0416667<br>
k( 15) = ( 0.5000000 0.0000000 0.4970441), wk = 0.0208333<br>
k( 16) = ( 0.0000000 0.2305937 0.4970441), wk = 0.0416667<br>
k( 17) = ( 0.2500000 0.2305937 0.4970441), wk = 0.0833333<br>
k( 18) = ( 0.5000000 0.2305937 0.4970441), wk = 0.0416667<br>
k( 19) = ( -0.2500000 0.0000000 0.2485220), wk = 0.0416667<br>
k( 20) = ( -0.2500000 -0.2305937 0.2485220), wk = 0.0833333<br>
<br>
cryst. coord.<br>
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333<br>
k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667<br>
k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333<br>
k( 4) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0416667<br>
k( 5) = ( 0.2500000 0.3333333 0.0000000), wk = 0.0833333<br>
k( 6) = ( 0.5000000 0.3333333 0.0000000), wk = 0.0416667<br>
k( 7) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0416667<br>
k( 8) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0416667<br>
k( 9) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0416667<br>
k( 10) = ( 0.0000000 0.3333333 0.2500000), wk = 0.0833333<br>
k( 11) = ( 0.2500000 0.3333333 0.2500000), wk = 0.0833333<br>
k( 12) = ( 0.5000000 0.3333333 0.2500000), wk = 0.0833333<br>
k( 13) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0208333<br>
k( 14) = ( 0.2500000 0.0000000 0.5000000), wk = 0.0416667<br>
k( 15) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0208333<br>
k( 16) = ( 0.0000000 0.3333333 0.5000000), wk = 0.0416667<br>
k( 17) = ( 0.2500000 0.3333333 0.5000000), wk = 0.0833333<br>
k( 18) = ( 0.5000000 0.3333333 0.5000000), wk = 0.0416667<br>
k( 19) = ( -0.2500000 0.0000000 0.2500000), wk = 0.0416667<br>
k( 20) = ( -0.2500000 -0.3333333 0.2500000), wk = 0.0833333<br>
<br>
Dense grid: 562059 G-vectors FFT dimensions: ( 96, 144, 96)<br>
<br>
Smooth grid: 198631 G-vectors FFT dimensions: ( 64, 96, 72)<br>
<br>
Dynamical RAM for wfc: 2.13 MB<br>
Dynamical RAM for wfc (w. buffer): 23.44 MB<br>
Dynamical RAM for U proj.: 1.14 MB<br>
Dynamical RAM for U proj. (w. buff.): 12.50 MB<br>
Dynamical RAM for str. fact: 2.14 MB<br>
Dynamical RAM for local pot: 0.00 MB<br>
Dynamical RAM for nlocal pot: 7.01 MB<br>
Dynamical RAM for qrad: 20.66 MB<br>
Dynamical RAM for rho,v,vnew: 7.01 MB<br>
Dynamical RAM for rhoin: 2.34 MB<br>
Dynamical RAM for rho*nmix: 17.15 MB<br>
Dynamical RAM for G-vectors: 2.10 MB<br>
Dynamical RAM for h,s,v(r/c): 1.48 MB<br>
Dynamical RAM for <psi|beta>: 0.41 MB<br>
Dynamical RAM for psi: 4.26 MB<br>
Dynamical RAM for hpsi: 4.26 MB<br>
Dynamical RAM for spsi: 4.26 MB<br>
Dynamical RAM for wfcinit/wfcrot: 11.30 MB<br>
Dynamical RAM for addusdens: 76.92 MB<br>
Estimated static dynamical RAM per process > 83.70 MB<br>
Estimated max dynamical RAM per process > 177.77 MB<br>
Estimated total dynamical RAM > 10.31 GB<br>
<br>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br>
Error in routine ylmr2 (15):<br>
l too large, or wrong number of Ylm required<br>
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br>
<br>
stopping ...<br>
<br>
...and so on for the other parallel jobs...<br>
<br>
Any idea what this errors indicates to? I never have seen this error when doing the same with K_POINTS {automatic}, ibrav = 0 and providing CELL_PARAMETERS directly. <br>
<br>
Thank you and best regards,<br>
Simon Rombauer<br>
Experimentalphysik IV<br>
University Augsburg<br>
Germany<br>
<br>
_______________________________________________<br>
The Quantum ESPRESSO community stands by the Ukrainian<br>
people and expresses its concerns about the devastating<br>
effects that the Russian military offensive has on their<br>
country and on the free and peaceful scientific, cultural,<br>
and economic cooperation amongst peoples<br>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" rel="noreferrer" target="_blank">www.max-centre.eu</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><br>
</blockquote></div>