[QE-users] Error in routine ylmr2 (15): l too large, or wrong number of Ylm required
Simon Imanuel Rombauer
simon.rombauer at student.uni-augsburg.de
Mon May 27 16:28:02 CEST 2024
Dear QE users,
when I run a scf calculation with a given K_POINTS {tpiba} list obtained from kpoints.x, I get the error "Error in routine ylmr2 (15): l too large, or wrong number of Ylm required".
My input file reads:
&CONTROL
calculation = 'scf'
outdir = './out/'
prefix = 'LVO_HP'
pseudo_dir = '../pseudo/'
!verbosity = 'high'
/
&SYSTEM
ecutrho = 720
ecutwfc = 90
ibrav = 8
celldm(1)=10.580262 !a => alat in a.u
celldm(2)=1.445544 !=> b/a
celldm(3)=1.005947 !=> c/a
nat = 20
nspin = 2
ntyp = 4 !4 becasue V1, V2 AFM
nbnd = 90
occupations = 'smearing'
smearing = 'mv'
degauss = 0.005
starting_magnetization(1) = 0.01
starting_magnetization(2) = 0.5
starting_magnetization(3) = -0.5
starting_magnetization(4) = 0.01
/
&ELECTRONS
conv_thr = 1.0d-08
electron_maxstep = 500
mixing_beta = 0.35
mixing_mode = 'local-TF'
!startingpot = 'file'
!startingwfc = 'file'
/
ATOMIC_SPECIES
La 138.90547 La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf
V1 50.9415 v_pbesol_v1.4.uspp.F.UPF
V2 50.9415 v_pbesol_v1.4.uspp.F.UPF
O 15.9994 O.pbesol-n-kjpaw_psl.0.1.UPF
ATOMIC_POSITIONS {crystal}
La 0.0335906495 0.7500000000 0.0054491195
La 0.4664093505 0.2500000000 0.5054491195
La 0.9664093505 0.2500000000 0.9945508805
La 0.5335906495 0.7500000000 0.4945508805
V1 0.5000000000 0.0000000000 0.0000000000
V1 0.5000000000 0.5000000000 0.0000000000
V2 0.0000000000 0.5000000000 0.5000000000
V2 0.0000000000 0.0000000000 0.5000000000
O 0.4820465431 0.7500000000 0.9217317548
O 0.0179534569 0.2500000000 0.4217317548
O 0.5179534569 0.2500000000 0.0782682452
O 0.9820465431 0.7500000000 0.5782682452
O 0.2827146714 0.9564225097 0.2821094459
O 0.2172853286 0.0435774903 0.7821094459
O 0.7172853286 0.4564225097 0.7178905541
O 0.7827146714 0.5435774903 0.2178905541
O 0.7172853286 0.0435774903 0.7178905541
O 0.7827146714 0.9564225097 0.2178905541
O 0.2827146714 0.5435774903 0.2821094459
O 0.2172853286 0.4564225097 0.7821094459
K_POINTS {tpiba}
18
0.0000000 0.0000000 0.0000000 1.00
0.2500000 0.0000000 0.0000000 2.00
0.5000000 0.0000000 0.0000000 1.00
0.0000000 0.2305937 0.0000000 2.00
0.2500000 0.2305937 0.0000000 4.00
0.5000000 0.2305937 0.0000000 2.00
0.0000000 0.0000000 0.2485220 2.00
0.2500000 0.0000000 0.2485220 4.00
0.5000000 0.0000000 0.2485220 2.00
0.0000000 0.2305937 0.2485220 4.00
0.2500000 0.2305937 0.2485220 8.00
0.5000000 0.2305937 0.2485220 4.00
0.0000000 0.0000000 0.4970441 1.00
0.2500000 0.0000000 0.4970441 2.00
0.5000000 0.0000000 0.4970441 1.00
0.0000000 0.2305937 0.4970441 2.00
0.2500000 0.2305937 0.4970441 4.00
0.5000000 0.2305937 0.4970441 2.00
HUBBARD {ortho-atomic}
V La-4f La-4f 1 1 5.0
V La-4f La-4f 2 2 5.0
V La-4f La-4f 3 3 5.0
V La-4f La-4f 4 4 5.0
V V1-3d V1-3d 5 5 2.7
V V1-3d V1-3d 6 6 2.7
V V2-3d V2-3d 7 7 2.7
V V2-3d V2-3d 8 8 2.7
The output file:
Program PWSCF v.7.3.1 starts on 27May2024 at 16:12:53
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
"P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
"P. Giannozzi et al., J. Chem. Phys. 152 154105 (2020);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote
Parallel version (MPI & OpenMP), running on 64 processor cores
Number of MPI processes: 64
Threads/MPI process: 1
MPI processes distributed on 1 nodes
1010768 MiB available memory on the printing compute node when the environment starts
Waiting for input...
Reading input from standard input
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 4
file La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf: wavefunction(s) 6S 0P 5D 0D 4F 0F renormalized
file O.pbesol-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P renormalized
First shells distances (in Bohr):
shell: 1 0.000000
shell: 2 4.579154
shell: 3 4.703718
shell: 4 4.827718
shell: 5 5.058152
shell: 6 5.439501
shell: 7 5.903114
i j dist (Bohr) stan-stan stan-bac bac-bac bac-stan
1 1 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
2 2 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
3 3 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
4 4 0.00000000 V = 5.0000 0.0000 0.0000 0.0000
5 5 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
6 6 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
7 7 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
8 8 0.00000000 V = 2.7000 0.0000 0.0000 0.0000
9 9 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
10 10 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
11 11 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
12 12 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
13 13 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
14 14 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
15 15 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
16 16 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
17 17 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
18 18 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
19 19 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
20 20 0.00000000 V = 0.0000 0.0000 0.0000 0.0000
K-points division: npool = 4
R & G space division: proc/nbgrp/npool/nimage = 16
Subspace diagonalization in iterative solution of the eigenvalue problem:
a serial algorithm will be used
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 580 289 79 35128 12413 1779
Max 581 290 80 35131 12416 1782
Sum 9289 4631 1269 562059 198631 28477
Using Slab Decomposition
bravais-lattice index = 8
lattice parameter (alat) = 10.5803 a.u.
unit-cell volume = 1722.2480 (a.u.)^3
number of atoms/cell = 20
number of atomic types = 4
number of electrons = 168.00
number of Kohn-Sham states= 90
kinetic-energy cutoff = 90.0000 Ry
charge density cutoff = 720.0000 Ry
scf convergence threshold = 1.0E-08
mixing beta = 0.3500
number of iterations used = 8 local-TF mixing
Exchange-correlation= SLA PW PSX PSC
( 1 4 10 8 0 0 0)
Hubbard projectors: ortho-atomic
Internal variables: lda_plus_u = T, lda_plus_u_kind = 2
celldm(1)= 10.580262 celldm(2)= 1.445544 celldm(3)= 1.005947
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 1.445544 0.000000 )
a(3) = ( 0.000000 0.000000 1.005947 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.000000 0.000000 )
b(2) = ( 0.000000 0.691781 0.000000 )
b(3) = ( 0.000000 0.000000 0.994088 )
PseudoPot. # 1 for La read from file:
../pseudo/La.paw.z_11.atompaw.wentzcovitch.v1.2_5D_to_4F.upf
MD5 check sum: 892fbf3b9b92b8b1c6aefb7cb3dda382
Pseudo is Projector augmented-wave + core cor, Zval = 11.0
Generated using ATOMPAW code
Shape of augmentation charge: BESSEL
Using radial grid of 1101 points, 8 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
l(7) = 3
l(8) = 3
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for V read from file:
../pseudo/v_pbesol_v1.4.uspp.F.UPF
MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9
Pseudo is Ultrasoft + core correction, Zval = 13.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 853 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100 1.100
1.100 1.100
PseudoPot. # 3 for V read from file:
../pseudo/v_pbesol_v1.4.uspp.F.UPF
MD5 check sum: 72fa7d0034c41d8adc50bbc8c632b9f9
Pseudo is Ultrasoft + core correction, Zval = 13.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 853 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 8 coefficients, rinner = 1.100 1.100 1.100
1.100 1.100
PseudoPot. # 4 for O read from file:
../pseudo/O.pbesol-n-kjpaw_psl.0.1.UPF
MD5 check sum: 81d73d1479e654e5638b0319f0d6c2c7
Pseudo is Projector augmented-wave + core cor, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.0 svn rev. 13079
Shape of augmentation charge: BESSEL
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
La 11.00 138.90547 La( 1.00)
V1 13.00 50.94150 V ( 1.00)
V2 13.00 50.94150 V ( 1.00)
O 6.00 15.99940 O ( 1.00)
Starting magnetic structure
atomic species magnetization
La 0.010
V1 0.500
V2 -0.500
O 0.010
4 Sym. Ops., with inversion, found ( 2 have fractional translation)
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [0,1,0]
cryst. s( 2) = ( -1 0 0 ) f =( 0.0000000 )
( 0 1 0 ) ( -0.5000000 )
( 0 0 -1 ) ( 0.0000000 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )
( 0.0000000 1.0000000 0.0000000 ) ( -0.7227720 )
( 0.0000000 0.0000000 -1.0000000 ) ( 0.0000000 )
isym = 3 inversion
cryst. s( 3) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 inv. 180 deg rotation - cart. axis [0,1,0]
cryst. s( 4) = ( 1 0 0 ) f =( 0.0000000 )
( 0 -1 0 ) ( -0.5000000 )
( 0 0 1 ) ( 0.0000000 )
cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 ) f =( 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 ) ( -0.7227720 )
( 0.0000000 0.0000000 1.0000000 ) ( 0.0000000 )
point group C_2h (2/m)
there are 4 classes
the character table:
E C2 i s_h
A_g 1.00 1.00 1.00 1.00
B_g 1.00 -1.00 1.00 -1.00
A_u 1.00 1.00 -1.00 -1.00
B_u 1.00 -1.00 -1.00 1.00
the symmetry operations in each class and the name of the first element:
E 1
identity
C2 2
180 deg rotation - cart. axis [0,1,0]
i 3
inversion
s_h 4
inv. 180 deg rotation - cart. axis [0,1,0]
Cartesian axes
site n. atom positions (alat units)
1 La tau( 1) = ( 0.0335906 1.0841580 0.0054815 )
2 La tau( 2) = ( 0.4664094 0.3613860 0.5084550 )
3 La tau( 3) = ( 0.9664094 0.3613860 1.0004655 )
4 La tau( 4) = ( 0.5335906 1.0841580 0.4974920 )
5 V1 tau( 5) = ( 0.5000000 0.0000000 0.0000000 )
6 V1 tau( 6) = ( 0.5000000 0.7227720 0.0000000 )
7 V2 tau( 7) = ( 0.0000000 0.7227720 0.5029735 )
8 V2 tau( 8) = ( 0.0000000 0.0000000 0.5029735 )
9 O tau( 9) = ( 0.4820465 1.0841580 0.9272133 )
10 O tau( 10) = ( 0.0179535 0.3613860 0.4242398 )
11 O tau( 11) = ( 0.5179535 0.3613860 0.0787337 )
12 O tau( 12) = ( 0.9820465 1.0841580 0.5817072 )
13 O tau( 13) = ( 0.2827147 1.3825508 0.2837872 )
14 O tau( 14) = ( 0.2172853 0.0629932 0.7867607 )
15 O tau( 15) = ( 0.7172853 0.6597788 0.7221598 )
16 O tau( 16) = ( 0.7827147 0.7857652 0.2191863 )
17 O tau( 17) = ( 0.7172853 0.0629932 0.7221598 )
18 O tau( 18) = ( 0.7827147 1.3825508 0.2191863 )
19 O tau( 19) = ( 0.2827147 0.7857652 0.2837872 )
20 O tau( 20) = ( 0.2172853 0.6597788 0.7867607 )
Crystallographic axes
site n. atom positions (cryst. coord.)
1 La tau( 1) = ( 0.0335906 0.7500000 0.0054491 )
2 La tau( 2) = ( 0.4664094 0.2500000 0.5054491 )
3 La tau( 3) = ( 0.9664094 0.2500000 0.9945509 )
4 La tau( 4) = ( 0.5335906 0.7500000 0.4945509 )
5 V1 tau( 5) = ( 0.5000000 0.0000000 0.0000000 )
6 V1 tau( 6) = ( 0.5000000 0.5000000 0.0000000 )
7 V2 tau( 7) = ( 0.0000000 0.5000000 0.5000000 )
8 V2 tau( 8) = ( 0.0000000 0.0000000 0.5000000 )
9 O tau( 9) = ( 0.4820465 0.7500000 0.9217318 )
10 O tau( 10) = ( 0.0179535 0.2500000 0.4217318 )
11 O tau( 11) = ( 0.5179535 0.2500000 0.0782682 )
12 O tau( 12) = ( 0.9820465 0.7500000 0.5782682 )
13 O tau( 13) = ( 0.2827147 0.9564225 0.2821094 )
14 O tau( 14) = ( 0.2172853 0.0435775 0.7821094 )
15 O tau( 15) = ( 0.7172853 0.4564225 0.7178906 )
16 O tau( 16) = ( 0.7827147 0.5435775 0.2178906 )
17 O tau( 17) = ( 0.7172853 0.0435775 0.7178906 )
18 O tau( 18) = ( 0.7827147 0.9564225 0.2178906 )
19 O tau( 19) = ( 0.2827147 0.5435775 0.2821094 )
20 O tau( 20) = ( 0.2172853 0.4564225 0.7821094 )
number of k points= 20 Marzari-Vanderbilt smearing, width (Ry)= 0.0050
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333
k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667
k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333
k( 4) = ( 0.0000000 0.2305937 0.0000000), wk = 0.0416667
k( 5) = ( 0.2500000 0.2305937 0.0000000), wk = 0.0833333
k( 6) = ( 0.5000000 0.2305937 0.0000000), wk = 0.0416667
k( 7) = ( 0.0000000 0.0000000 0.2485220), wk = 0.0416667
k( 8) = ( 0.2500000 0.0000000 0.2485220), wk = 0.0416667
k( 9) = ( 0.5000000 0.0000000 0.2485220), wk = 0.0416667
k( 10) = ( 0.0000000 0.2305937 0.2485220), wk = 0.0833333
k( 11) = ( 0.2500000 0.2305937 0.2485220), wk = 0.0833333
k( 12) = ( 0.5000000 0.2305937 0.2485220), wk = 0.0833333
k( 13) = ( 0.0000000 0.0000000 0.4970441), wk = 0.0208333
k( 14) = ( 0.2500000 0.0000000 0.4970441), wk = 0.0416667
k( 15) = ( 0.5000000 0.0000000 0.4970441), wk = 0.0208333
k( 16) = ( 0.0000000 0.2305937 0.4970441), wk = 0.0416667
k( 17) = ( 0.2500000 0.2305937 0.4970441), wk = 0.0833333
k( 18) = ( 0.5000000 0.2305937 0.4970441), wk = 0.0416667
k( 19) = ( -0.2500000 0.0000000 0.2485220), wk = 0.0416667
k( 20) = ( -0.2500000 -0.2305937 0.2485220), wk = 0.0833333
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0208333
k( 2) = ( 0.2500000 0.0000000 0.0000000), wk = 0.0416667
k( 3) = ( 0.5000000 0.0000000 0.0000000), wk = 0.0208333
k( 4) = ( 0.0000000 0.3333333 0.0000000), wk = 0.0416667
k( 5) = ( 0.2500000 0.3333333 0.0000000), wk = 0.0833333
k( 6) = ( 0.5000000 0.3333333 0.0000000), wk = 0.0416667
k( 7) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0416667
k( 8) = ( 0.2500000 0.0000000 0.2500000), wk = 0.0416667
k( 9) = ( 0.5000000 0.0000000 0.2500000), wk = 0.0416667
k( 10) = ( 0.0000000 0.3333333 0.2500000), wk = 0.0833333
k( 11) = ( 0.2500000 0.3333333 0.2500000), wk = 0.0833333
k( 12) = ( 0.5000000 0.3333333 0.2500000), wk = 0.0833333
k( 13) = ( 0.0000000 0.0000000 0.5000000), wk = 0.0208333
k( 14) = ( 0.2500000 0.0000000 0.5000000), wk = 0.0416667
k( 15) = ( 0.5000000 0.0000000 0.5000000), wk = 0.0208333
k( 16) = ( 0.0000000 0.3333333 0.5000000), wk = 0.0416667
k( 17) = ( 0.2500000 0.3333333 0.5000000), wk = 0.0833333
k( 18) = ( 0.5000000 0.3333333 0.5000000), wk = 0.0416667
k( 19) = ( -0.2500000 0.0000000 0.2500000), wk = 0.0416667
k( 20) = ( -0.2500000 -0.3333333 0.2500000), wk = 0.0833333
Dense grid: 562059 G-vectors FFT dimensions: ( 96, 144, 96)
Smooth grid: 198631 G-vectors FFT dimensions: ( 64, 96, 72)
Dynamical RAM for wfc: 2.13 MB
Dynamical RAM for wfc (w. buffer): 23.44 MB
Dynamical RAM for U proj.: 1.14 MB
Dynamical RAM for U proj. (w. buff.): 12.50 MB
Dynamical RAM for str. fact: 2.14 MB
Dynamical RAM for local pot: 0.00 MB
Dynamical RAM for nlocal pot: 7.01 MB
Dynamical RAM for qrad: 20.66 MB
Dynamical RAM for rho,v,vnew: 7.01 MB
Dynamical RAM for rhoin: 2.34 MB
Dynamical RAM for rho*nmix: 17.15 MB
Dynamical RAM for G-vectors: 2.10 MB
Dynamical RAM for h,s,v(r/c): 1.48 MB
Dynamical RAM for <psi|beta>: 0.41 MB
Dynamical RAM for psi: 4.26 MB
Dynamical RAM for hpsi: 4.26 MB
Dynamical RAM for spsi: 4.26 MB
Dynamical RAM for wfcinit/wfcrot: 11.30 MB
Dynamical RAM for addusdens: 76.92 MB
Estimated static dynamical RAM per process > 83.70 MB
Estimated max dynamical RAM per process > 177.77 MB
Estimated total dynamical RAM > 10.31 GB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine ylmr2 (15):
l too large, or wrong number of Ylm required
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
...and so on for the other parallel jobs...
Any idea what this errors indicates to? I never have seen this error when doing the same with K_POINTS {automatic}, ibrav = 0 and providing CELL_PARAMETERS directly.
Thank you and best regards,
Simon Rombauer
Experimentalphysik IV
University Augsburg
Germany
More information about the users
mailing list