[QE-users] Problem with generating q-points for lambda
Arena Konta
qe6user at gmail.com
Thu Mar 14 19:14:03 CET 2019
Dear Professors Paolo and and Hari,
I appreciate your both help. However, I am still a little bit confused which weights should I chose for lambda.x file. For example:
bravais-lattice index = 7
lattice parameter (alat) = 7.9506 a.u.
unit-cell volume = 591.7416 (a.u.)^3
celldm(1)= 7.950626 celldm(2)= 0.000000 celldm(3)= 2.354822
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
scf calculations on the mesh 4x4x4 give me:
number of k points= 13 Marzari-Vanderbilt smearing, width (Ry)= 0.0200
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0312500 = 2
k( 2) = ( -0.2500000 0.0000000 0.1061651), wk = 0.2500000 = 16
k( 3) = ( 0.5000000 0.0000000 -0.2123303), wk = 0.1250000 = 8
k( 4) = ( -0.2500000 0.2500000 0.2123303), wk = 0.2500000 = 16
k( 5) = ( 0.5000000 0.2500000 -0.1061651), wk = 0.5000000 = 32
k( 6) = ( 0.2500000 0.2500000 0.0000000), wk = 0.1250000 = 8
k( 7) = ( 0.5000000 -0.5000000 -0.4246605), wk = 0.0625000 = 4
k( 8) = ( 0.0000000 0.0000000 0.2123303), wk = 0.0625000 = 4
k( 9) = ( 0.7500000 0.0000000 -0.1061651), wk = 0.2500000 = 16
k( 10) = ( 0.5000000 0.0000000 0.0000000), wk = 0.1250000 = 8
k( 11) = ( 0.7500000 -0.7500000 -0.4246605), wk = 0.1250000 = 8
k( 12) = ( 0.5000000 -0.5000000 -0.2123303), wk = 0.0625000 = 4
k( 13) = ( 0.0000000 0.0000000 -0.4246605), wk = 0.0312500 = 2
(there is no inversion in crystal structure)
ph.x calculations are following:
Dynamical matrices for ( 4, 4, 4) uniform grid of q-points
( 13q-points):
N xq(1) xq(2) xq(3)
1 0.000000000 0.000000000 0.000000000
2 -0.250000000 0.000000000 0.106165127
3 0.500000000 -0.000000000 -0.212330253
4 -0.250000000 0.250000000 0.212330253
5 0.500000000 0.250000000 -0.106165127
6 0.250000000 0.250000000 0.000000000
7 0.500000000 -0.500000000 -0.424660507
8 0.000000000 0.000000000 0.212330253
9 0.750000000 -0.000000000 -0.106165127
10 0.500000000 -0.000000000 0.000000000
11 0.750000000 -0.750000000 -0.424660507
12 0.500000000 -0.500000000 -0.212330253
13 0.000000000 -0.000000000 -0.424660507
Therefore, we can say that both q- and k-meshes are "exactly" the same in scf and ph calculations. However, when I generate k-mesh using kpoints.x, the set is equivalent, but the weights and order are different:
***************************************************
* *
* Welcome to the special points world! *
*________________________________________________ *
* 1 = cubic p (sc ) 8 = orthor p (so ) *
* 2 = cubic f (fcc) 9 = orthor base-cent. *
* 3 = cubic i (bcc) 10 = orthor face-cent. *
* 4 = hex & trig p 11 = orthor body-cent. *
* 5 = trigonal r 12 = monoclinic p *
* 6 = tetrag p (st ) 13 = monocl base-cent. *
* 7 = tetrag i (bct) 14 = triclinic p *
***************************************************
bravais lattice >> 7
filout [mesh_k] >> TEST
enter celldm(3) >> 2.35482
mesh: n1 n2 n3 >> 4 4 4
mesh: k1 k2 k3 (0 no shift, 1 shifted) >> 0 0 0
write all k? [f] >>
# of k-points == 13 of 64
13
1 0.0000000 0.0000000 0.0000000 1.00
2 0.2500000 -0.2500000 0.0000000 4.00
3 0.5000000 -0.5000000 0.0000000 2.00
4 0.0000000 0.2500000 0.1061652 8.00
5 0.5000000 -0.2500000 0.1061652 16.00
6 0.0000000 0.5000000 0.2123305 4.00
7 0.2500000 0.2500000 0.2123305 8.00
8 0.0000000 0.0000000 0.2123305 2.00
9 0.5000000 -0.5000000 0.2123305 2.00
10 0.0000000 0.2500000 0.3184957 8.00
11 0.0000000 0.5000000 0.4246609 4.00
12 0.2500000 0.2500000 0.4246609 4.00
13 0.0000000 0.0000000 0.4246609 1.00
Which weights should I use in my el-ph calculations?
--
with regards
Arena Konta
The Institute of Thermophysics in Novosibirsk Scientific Center
More information about the users
mailing list