[QE-users] unefficient parallelization of scf calculation

Thomas Brumme thomas.brumme at uni-leipzig.de
Fri Apr 12 12:06:28 CEST 2019


Dear Julien,

it's actually described indirectly in the paper - in all figures you can 
see that the
system is centered a z = 0. Otherwise, the cutoff will cut off some of 
the real
Coulomb interactions. Probably this should be added to the description, 
but this
should be done by the original author. If he doesn't answer here, I will 
contact
him.

The way you center should be more like (zh+zl)=0 - I don't understand why
you want to divide by 2 (zero divided by 2?!). That the slab isn't 
centered should
not be problematic. From your input I also see that the vacuum region 
should be
large enough but maybe you can try increasing it a bit more - maybe 
increase the
cell dimension in z to 45 or 50 Angstrom?

Cheerio

Thomas


On 4/12/19 11:30 AM, JULIEN, CLAUDE, PIERRE BARBAUD wrote:
>
> Well actually, this remark may be much closer to solve my problem than 
> you might think !
>
> I tried to run the simulation again on the cluster without the 
> assume_isolated=’2D’ flag, and the parallelization was efficient this 
> time. It seemed to scale well with growing number of procs. So thank 
> you very much for this suggestion.
>
> However, this raised other questions that I was not able to find an 
> answer to:
>
> ·Where does the information about the need to center the system come 
> from? I could not find track of it in the INPUT_PW documentation. I 
> only quickly glanced over the paper mentioned as reference in the ‘2D’ 
> flag, but I don’t suppose that such technical details would be 
> explained there ( as I imagine that it is more relevant to the 
> particular coding implementation in quantum espresso than the general 
> method described in the article)
>
> ·I tried to correct the assume_isolated, but I might have 
> misunderstood how to center the system. I just took the atom with 
> “highest z” zh and the one with “lowest z” zl, and made sure to shift 
> the whole so that the average (zh+zl)/2=0. This did not work. However, 
> this particular example being made of a slab and a 2d layer over it, 
> this means, among others, that the slab itself is not centered, and I 
> am unsure whether this is the correct way to do it
>
> Best,
>
> Julien
>
> *From:*Thomas Brumme [mailto:thomas.brumme at uni-leipzig.de]
> *Sent:* mercredi 10 avril 2019 18:19
> *To:* Quantum Espresso users Forum; Julien Barbaud
> *Subject:* Re: [QE-users] unefficient parallelization of scf calculation
>
> Dear Julien,
>
> I can't give any valuable input for your question regarding the 
> parallelization, but I think your
> input is wrong. Using assume_isolated needs the system to be centered 
> around z=0.
>
> Regards
>
> Thomas
>
> On 4/10/19 11:36 AM, Julien Barbaud wrote:
>
>     I am starting to use a hpc cluster of my university, but I am very
>     green on parallel computation.
>
>     I have made a first test (test #1) on a very small-scale
>     simulation (relaxation of a GO sheet with 19 atoms, with respect
>     to the gamma point). The calculation took 3m20s to run on 1 proc
>     on my personal computer. On the cluster with 4 proc and default
>     parallel options, it took 1m5s, and on 8 proc it took 44s. This
>     seems like a reasonable behavior, and at least shows that raising
>     the number of procs does reduce computation time in this case
>     (with obvious limitations if too many procs for the job).
>
>     However I tried with another test, a bit bigger (test #2). This
>     example is a scf calculation with 120 atoms (still with respect to
>     the gamma point). In this case, the parallelization brings
>     absolutely no improvement. In fact, although the /outfile/
>     confirms that the code is running on N procs, it has similar
>     performances as if it was running on 1 proc (sometimes even worse
>     actually, but probably not in a significant manner, as the times
>     are fluctuating a bit from 1 run to another)
>
>     I tried to run this same input file on my personal computer both
>     on 1 and 2 cores. Turns out that it takes 10376s to run 10
>     iterations on 1 core, while it takes 6777s on two cores, so it
>     seems that the parallelization is doing ok on my computer.
>
>     I have tried to run with different number of cores on the hpc, and
>     different parallelization options (like for instance –nb 4), but
>     nothing seems to improve the time
>
>     Basically, I am stuck with those 2 seemingly conflicting facts:
>
>       * Parallelization seems to have no particular problem on the hpc
>         cluster because test #1 gives good results
>       * Parallelization seems to have no particular problem with the
>         particular input file #2 because it seems to scale reasonably
>         with proc number on my individual computer
>
>     However, combining both and running this file in parallel on the
>     hpc cluster ends up not working correctly…
>
>     I included below the input file and output file of test #2. I also
>     included as well as the slurm script that I use to submit the
>     calculation to the job manager, in case it helps (test2.scf.slurm.txt)
>
>     Any suggestion on what is going wrong would be very welcome.
>
>     Julien
>
>     *----------------------------------test2.in---------------------------------------*
>
>     &CONTROL
>       title = '# Quantum Espresso PWSCF output snapshot # 0'
>       pseudo_dir = '/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/' ,
>       prefix='bonding_scf'
>       calculation = 'scf'
>       outdir='./outslurm'
>     /
>
>     &SYSTEM
>       nat= 120
>       ntyp= 7
>       ibrav= 0
>       ecutwfc= 50, ecutrho=400,
>       occupations='smearing', smearing='mv', degauss=1.0d-3
>       assume_isolated='2D'
>     /
>
>     &ELECTRONS
>       mixing_beta = 0.5
>       conv_thr =  1.0d-7
>       electron_maxstep=1
>     /
>
>     &IONS
>     /
>
>     &CELL
>     /
>
>     ATOMIC_SPECIES
>     C   12.011  C.pbesol-n-kjpaw_psl.1.0.0.UPF
>     N   14.007  N.pbesol-n-kjpaw_psl.0.1.UPF
>     H    1.008  H.pbesol-kjpaw_psl.0.1.UPF
>     Pb  207.2   Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF
>     I   126.9   I.pbesol-n-kjpaw_psl.1.0.0.UPF
>     O   15.999  O.pbesol-n-kjpaw_psl.1.0.0.UPF
>     Cl  35.450  Cl.pbesol-n-kjpaw_psl.1.0.0.UPF
>
>
>     CELL_PARAMETERS angstrom
>           6.40743642        0.00000000        0.00000000
>           0.00000000       12.53119000        0.00000000
>           0.00000000        0.00000000       39.01263233
>
>
>     ATOMIC_POSITIONS angstrom
>     C         3.20373698        3.26295456       22.67510117
>     N         4.36830205        2.66824164       22.67510117
>     N         2.03914607        2.66824164       22.67510117
>     H         3.20373076        4.35970913       22.67510117
>     H         5.20200492        3.26227865       22.67510117
>     H         4.49794030        1.65118734       22.67510117
>     H         1.90952027        1.65118734       22.67510117
>     H         1.20545622        3.26227865       22.67510117
>     Pb        6.40746106        6.04808537       19.50631617
>     I         3.20373108        6.16571088       19.50631617
>     I         6.40746051        2.89948619       19.50631617
>     I         0.00000101        5.76270558       22.67510117
>     C         3.20373698        9.52854956       22.67510117
>     N         4.36830205        8.93383664       22.67510117
>     N         2.03914607        8.93383664       22.67510117
>     H         3.20373076       10.62530413       22.67510117
>     H         5.20200492        9.52787365       22.67510117
>     H         4.49794030        7.91678234       22.67510117
>     H         1.90952027        7.91678234       22.67510117
>     H         1.20545622        9.52787365       22.67510117
>     Pb        6.40746106       12.31368037       19.50631617
>     I         3.20373108       12.43130588       19.50631617
>     I         6.40746051        9.16508119       19.50631617
>     I         0.00000101       12.02830057       22.67510117
>     C         3.20373698        3.26295456       29.01264528
>     N         4.36830205        2.66824164       29.01264528
>     N         2.03914607        2.66824164       29.01264528
>     H         3.20373076        4.35970913       29.01264528
>     H         5.20200492        3.26227865       29.01264528
>     H         4.49794030        1.65118734       29.01264528
>     H         1.90952027        1.65118734       29.01264528
>     H         1.20545622        3.26227865       29.01264528
>     Pb        6.40746106        6.04808537       25.84386028
>     I         3.20373108        6.16571088       25.84386028
>     I         6.40746051        2.89948619       25.84386028
>     I         0.00000101        5.76270558       29.01264528
>     C         3.20373698        9.52854956       29.01264528
>     N         4.36830205        8.93383664       29.01264528
>     N         2.03914607        8.93383664       29.01264528
>     H         3.20373076       10.62530413       29.01264528
>     H         5.20200492        9.52787365       29.01264528
>     H         4.49794030        7.91678234       29.01264528
>     H         1.90952027        7.91678234       29.01264528
>     H         1.20545622        9.52787365       29.01264528
>     Pb        6.40746106       12.31368037       25.84386028
>     I         3.20373108       12.43130588       25.84386028
>     I         6.40746051        9.16508119       25.84386028
>     I         0.00000101       12.02830057       29.01264528
>     C         3.20373698        3.26295456       35.35018939
>     N         4.36830205        2.66824164       35.35018939
>     N         2.03914607        2.66824164       35.35018939
>     H         3.20373076        4.35970913       35.35018939
>     H         5.20200492        3.26227865       35.35018939
>     H         4.49794030        1.65118734       35.35018939
>     H         1.90952027        1.65118734       35.35018939
>     H         1.20545622        3.26227865       35.35018939
>     Pb        6.40746106        6.04808537       32.18140439
>     I         3.20373108        6.16571088       32.18140439
>     I         6.40746051        2.89948619       32.18140439
>     I         0.00000101        5.76270558       35.35018939
>     C         3.20373698        9.52854956       35.35018939
>     N         4.36830205        8.93383664       35.35018939
>     N         2.03914607        8.93383664       35.35018939
>     H         3.20373076       10.62530413       35.35018939
>     H         5.20200492        9.52787365       35.35018939
>     H         4.49794030        7.91678234       35.35018939
>     H         1.90952027        7.91678234       35.35018939
>     H         1.20545622        9.52787365       35.35018939
>     Pb        6.40746106       12.31368037       32.18140439
>     I         3.20373108       12.43130588       32.18140439
>     I         6.40746051        9.16508119       32.18140439
>     I         0.00000101       12.02830057       35.35018939
>     C        -2.65922562        1.02746622       13.15267801
>     C        -1.57082020        2.76789659       14.15213700
>     C        -1.55249267        1.43382279       13.92545145
>     C        -2.76678501        3.43396657       13.80880118
>     C        -0.51572401        0.59007742       14.27042957
>     C         0.45127539        2.57771266       15.36479250
>     C         0.54032636        1.13871696       14.89500427
>     C        -0.61858466        3.46111062       14.87552012
>     C         1.75850840        0.45260751       14.42517077
>     C         2.51877126        2.72823145       14.25997933
>     C         2.54527275        1.46853929       13.80948684
>     C         1.69149484        3.42061251       15.24764489
>     C        -2.84434923        4.73311498       13.75015587
>     C        -1.79251576        6.80155604       13.82062727
>     C        -1.71556103        5.46156288       14.02089871
>     C        -2.79591766        7.89012407       13.91075998
>     C        -0.67171524        4.85078215       14.72657807
>     C         0.42299842        7.09269756       14.52980725
>     C         0.31418038        5.75006370       15.32008815
>     C        -0.54822530        7.37927093       13.62065670
>     C         1.58501883        4.93901110       15.15192558
>     C         1.95672818        6.38683569       12.97082740
>     C         2.39800998        5.48893963       14.08928384
>     C         2.19010582        7.82391704       13.36789777
>     C        -2.58931431        9.73216977       11.12323260
>     C        -1.53736385       11.49261513       12.63531287
>     C        -1.43991415       10.25590370       11.85590265
>     C        -2.46212319       12.58463568       12.27360914
>     C        -0.60003148        9.34961386       12.41523759
>     C         0.61521796       10.90977347       13.68739727
>     C         0.56702168        9.72454135       13.05961564
>     C        -0.57311928       11.74387481       13.77090253
>     C         1.73778864        8.96596466       12.44952664
>     C         2.44039831       11.26999757       12.43362532
>     C         2.66220529       10.00525725       12.01318349
>     C         1.83430055       11.66382030       13.76046404
>     Cl       -0.00001799        6.04797424       17.07363791
>     Cl        1.25165378        8.40223027       10.76754187
>     O        -1.79125675       11.13196776       14.04477237
>     O         2.87346590       12.19705486       11.50562577
>     O         2.66595523        5.77705032       15.51329335
>     O         1.68196546        5.86106544       11.91469705
>     O         2.44111071       11.89613785       15.06748010
>     O         3.89019144        8.86144083       14.58391140
>     O        -2.48663871        8.96018517       10.18744705
>     O        -0.74483722        7.99628057       12.39035840
>     O         1.51084248        7.88917390       14.66305294
>     O         1.28942315        2.85893197       16.48674549
>
>
>     K_POINTS gamma
>
>     *-----------------------------------------------------test2.out--------------------------------------------*
>
>
>          Program PWSCF v.6.3 starts on 10Apr2019 at 15:35:34
>
>          This program is part of the open-source Quantum ESPRESSO suite
>          for quantum simulation of materials; please cite
>              "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502
>     (2009);
>              "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901
>     (2017);
>               URL http://www.quantum-espresso.org",
>          in publications or presentations arising from this work. More
>     details at
>     http://www.quantum-espresso.org/quote
>
>          Parallel version (MPI), running on     8 processors
>
>          MPI processes distributed on     1 nodes
>          R & G space division:  proc/nbgrp/npool/nimage =       8
>          Reading input from
>     /lustre/home/acct-mseyxd/mseyxd/QE/GO-Cl/FAPBI3_bonding/scf/1x2x3_matching/bonding.scf.in
>     Warning: card &IONS ignored
>     Warning: card / ignored
>     Warning: card &CELL ignored
>     Warning: card / ignored
>
>          Current dimensions of program PWSCF are:
>          Max number of different atomic species (ntypx) = 10
>          Max number of k-points (npk) =  40000
>          Max angular momentum in pseudopotentials (lmaxx) =  3
>                    file C.pbesol-n-kjpaw_psl.1.0.0.UPF:
>     wavefunction(s)  2S 2P renormalized
>                    file N.pbesol-n-kjpaw_psl.0.1.UPF: wavefunction(s) 
>     2P renormalized
>                    file H.pbesol-kjpaw_psl.0.1.UPF: wavefunction(s) 
>     1S renormalized
>                    file Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF:
>     wavefunction(s)  6S 6P 5D renormalized
>                    file I.pbesol-n-kjpaw_psl.1.0.0.UPF:
>     wavefunction(s)  5S renormalized
>                    file O.pbesol-n-kjpaw_psl.1.0.0.UPF:
>     wavefunction(s)  2S 2P renormalized
>                    file Cl.pbesol-n-kjpaw_psl.1.0.0.UPF:
>     wavefunction(s)  3S 3P renormalized
>
>          gamma-point specific algorithms are used
>
>          Subspace diagonalization in iterative solution of the
>     eigenvalue problem:
>          a serial algorithm will be used
>
>
>          Parallelization info
>          --------------------
>          sticks:   dense  smooth     PW     G-vecs:    dense
>     smooth      PW
>          Min        1140     570    141               356988 126222  
>     15758
>          Max        1142     572    142               357012 126236  
>     15798
>          Sum        9123    4565   1135              2856023 1009807 
>     126259
>
>
>          Title:
>          # Quantum Espresso PWSCF output snapshot # 0
>
>
>          bravais-lattice index     =            0
>          lattice parameter (alat)  =      12.1083  a.u.
>          unit-cell volume          =   21138.7101 (a.u.)^3
>          number of atoms/cell      =          120
>          number of atomic types    =            7
>          number of electrons       =       542.00
>          number of Kohn-Sham states=          325
>          kinetic-energy cutoff     =      50.0000  Ry
>          charge density cutoff     =     400.0000  Ry
>          convergence threshold     =      1.0E-07
>          mixing beta               =       0.5000
>          number of iterations used =            8  plain mixing
>          Exchange-correlation      = SLA PW PSX PSC ( 1  4 10  8 0 0)
>
>          celldm(1)=  12.108300  celldm(2)=   0.000000 celldm(3)=  
>     0.000000
>          celldm(4)=   0.000000  celldm(5)=   0.000000 celldm(6)=  
>     0.000000
>
>          crystal axes: (cart. coord. in units of alat)
>                    a(1) = (   1.000000   0.000000   0.000000 )
>                    a(2) = (   0.000000   1.955726   0.000000 )
>                    a(3) = (   0.000000   0.000000   6.088649 )
>
>          reciprocal axes: (cart. coord. in units 2 pi/alat)
>                    b(1) = (  1.000000  0.000000  0.000000 )
>                    b(2) = (  0.000000  0.511319  0.000000 )
>                    b(3) = (  0.000000  0.000000  0.164240 )
>
>
>          PseudoPot. # 1 for C  read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/C.pbesol-n-kjpaw_psl.1.0.0.UPF
>          MD5 check sum: f9b2fe17d1f478429498b05d17159f9e
>          Pseudo is Projector augmented-wave + core cor, Zval = 4.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1073 points,  4 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 2 for N  read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/N.pbesol-n-kjpaw_psl.0.1.UPF
>          MD5 check sum: 15bd223d5d75e9eda893d0f4e6bdad1b
>          Pseudo is Projector augmented-wave + core cor, Zval = 5.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1085 points,  4 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 3 for H  read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/H.pbesol-kjpaw_psl.0.1.UPF
>          MD5 check sum: 27a6b98f1514c59d399e798f1258b8b7
>          Pseudo is Projector augmented-wave, Zval =  1.0
>          Generated using "atomic" code by A. Dal Corso v.5.0.2 svn
>     rev. 9415
>          Shape of augmentation charge: PSQ
>          Using radial grid of  929 points,  2 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 4 for Pb read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF
>          MD5 check sum: 56da3be0db09ba43f309b470f7bff7d1
>          Pseudo is Projector augmented-wave + core cor, Zval = 14.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1281 points,  6 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>                     l(5) =   2
>                     l(6) =   2
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 5 for I  read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/I.pbesol-n-kjpaw_psl.1.0.0.UPF
>          MD5 check sum: 6038403ff9b03366b27f71806436e734
>          Pseudo is Projector augmented-wave + core cor, Zval = 7.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1247 points,  6 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>                     l(5) =   2
>                     l(6) =   2
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 6 for O  read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/O.pbesol-n-kjpaw_psl.1.0.0.UPF
>          MD5 check sum: cb766521a97cf798d01896eaf7ac9a0a
>          Pseudo is Projector augmented-wave + core cor, Zval = 6.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1095 points,  4 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>          Q(r) pseudized with 0 coefficients
>
>
>          PseudoPot. # 7 for Cl read from file:
>     /lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/Cl.pbesol-n-kjpaw_psl.1.0.0.UPF
>          MD5 check sum: 939a64fc035742408689cdf8470f8314
>          Pseudo is Projector augmented-wave + core cor, Zval = 7.0
>          Generated using "atomic" code by A. Dal Corso v.6.3
>          Shape of augmentation charge: PSQ
>          Using radial grid of 1157 points,  6 beta functions with:
>                     l(1) =   0
>                     l(2) =   0
>                     l(3) =   1
>                     l(4) =   1
>                     l(5) =   2
>                     l(6) =   2
>          Q(r) pseudized with 0 coefficients
>
>
>          atomic species   valence    mass     pseudopotential
>             C              4.00    12.01100     C ( 1.00)
>             N              5.00    14.00700     N ( 1.00)
>             H              1.00     1.00800     H ( 1.00)
>             Pb            14.00   207.20000     Pb( 1.00)
>             I              7.00   126.90000     I ( 1.00)
>             O              6.00    15.99900     O ( 1.00)
>             Cl             7.00    35.45000     Cl( 1.00)
>
>          No symmetry found
>
>
>
>        Cartesian axes
>
>          site n.     atom                  positions (alat units)
>              1           C   tau(   1) = (   0.5000029 0.5092449  
>     3.5388726  )
>              2           N   tau(   2) = (   0.6817550 0.4164289  
>     3.5388726  )
>              3           N   tau(   3) = (   0.3182468 0.4164289  
>     3.5388726  )
>              4           H   tau(   4) = (   0.5000020 0.6804140  
>     3.5388726  )
>              5           H   tau(   5) = (   0.8118699 0.5091394  
>     3.5388726  )
>              6           H   tau(   6) = (   0.7019875 0.2576986  
>     3.5388726  )
>              7           H   tau(   7) = (   0.2980163 0.2576986  
>     3.5388726  )
>              8           H   tau(   8) = (   0.1881339 0.5091394  
>     3.5388726  )
>              9           Pb  tau(   9) = (   1.0000038 0.9439166  
>     3.0443246  )
>             10           I   tau(  10) = (   0.5000020 0.9622742  
>     3.0443246  )
>             11           I   tau(  11) = (   1.0000038 0.4525189  
>     3.0443246  )
>             12           I   tau(  12) = (   0.0000002 0.8993777  
>     3.5388726  )
>             13           C   tau(  13) = (   0.5000029 1.4871079  
>     3.5388726  )
>             14           N   tau(  14) = (   0.6817550 1.3942919  
>     3.5388726  )
>             15           N   tau(  15) = (   0.3182468 1.3942919  
>     3.5388726  )
>             16           H   tau(  16) = (   0.5000020 1.6582770  
>     3.5388726  )
>             17           H   tau(  17) = (   0.8118699 1.4870024  
>     3.5388726  )
>             18           H   tau(  18) = (   0.7019875 1.2355616  
>     3.5388726  )
>             19           H   tau(  19) = (   0.2980163 1.2355616  
>     3.5388726  )
>             20           H   tau(  20) = (   0.1881339 1.4870024  
>     3.5388726  )
>             21           Pb  tau(  21) = (   1.0000038 1.9217796  
>     3.0443246  )
>             22           I   tau(  22) = (   0.5000020 1.9401372  
>     3.0443246  )
>             23           I   tau(  23) = (   1.0000038 1.4303819  
>     3.0443246  )
>             24           I   tau(  24) = (   0.0000002 1.8772407  
>     3.5388726  )
>             25           C   tau(  25) = (   0.5000029 0.5092449  
>     4.5279646  )
>             26           N   tau(  26) = (   0.6817550 0.4164289  
>     4.5279646  )
>             27           N   tau(  27) = (   0.3182468 0.4164289  
>     4.5279646  )
>             28           H   tau(  28) = (   0.5000020 0.6804140  
>     4.5279646  )
>             29           H   tau(  29) = (   0.8118699 0.5091394  
>     4.5279646  )
>             30           H   tau(  30) = (   0.7019875 0.2576986  
>     4.5279646  )
>             31           H   tau(  31) = (   0.2980163 0.2576986  
>     4.5279646  )
>             32           H   tau(  32) = (   0.1881339 0.5091394  
>     4.5279646  )
>             33           Pb  tau(  33) = (   1.0000038 0.9439166  
>     4.0334166  )
>             34           I   tau(  34) = (   0.5000020 0.9622742  
>     4.0334166  )
>             35           I   tau(  35) = (   1.0000038 0.4525189  
>     4.0334166  )
>             36           I   tau(  36) = (   0.0000002 0.8993777  
>     4.5279646  )
>             37           C   tau(  37) = (   0.5000029 1.4871079  
>     4.5279646  )
>             38           N   tau(  38) = (   0.6817550 1.3942919  
>     4.5279646  )
>             39           N   tau(  39) = (   0.3182468 1.3942919  
>     4.5279646  )
>             40           H   tau(  40) = (   0.5000020 1.6582770  
>     4.5279646  )
>             41           H   tau(  41) = (   0.8118699 1.4870024  
>     4.5279646  )
>             42           H   tau(  42) = (   0.7019875 1.2355616  
>     4.5279646  )
>             43           H   tau(  43) = (   0.2980163 1.2355616  
>     4.5279646  )
>             44           H   tau(  44) = (   0.1881339 1.4870024  
>     4.5279646  )
>             45           Pb  tau(  45) = (   1.0000038 1.9217796  
>     4.0334166  )
>             46           I   tau(  46) = (   0.5000020 1.9401372  
>     4.0334166  )
>             47           I   tau(  47) = (   1.0000038 1.4303819  
>     4.0334166  )
>             48           I   tau(  48) = (   0.0000002 1.8772407  
>     4.5279646  )
>             49           C   tau(  49) = (   0.5000029 0.5092449  
>     5.5170566  )
>             50           N   tau(  50) = (   0.6817550 0.4164289  
>     5.5170566  )
>             51           N   tau(  51) = (   0.3182468 0.4164289  
>     5.5170566  )
>             52           H   tau(  52) = (   0.5000020 0.6804140  
>     5.5170566  )
>             53           H   tau(  53) = (   0.8118699 0.5091394  
>     5.5170566  )
>             54           H   tau(  54) = (   0.7019875 0.2576986  
>     5.5170566  )
>             55           H   tau(  55) = (   0.2980163 0.2576986  
>     5.5170566  )
>             56           H   tau(  56) = (   0.1881339 0.5091394  
>     5.5170566  )
>             57           Pb  tau(  57) = (   1.0000038 0.9439166  
>     5.0225086  )
>             58           I   tau(  58) = (   0.5000020 0.9622742  
>     5.0225086  )
>             59           I   tau(  59) = (   1.0000038 0.4525189  
>     5.0225086  )
>             60           I   tau(  60) = (   0.0000002 0.8993777  
>     5.5170566  )
>             61           C   tau(  61) = (   0.5000029 1.4871079  
>     5.5170566  )
>             62           N   tau(  62) = (   0.6817550 1.3942919  
>     5.5170566  )
>             63           N   tau(  63) = (   0.3182468 1.3942919  
>     5.5170566  )
>             64           H   tau(  64) = (   0.5000020 1.6582770  
>     5.5170566  )
>             65           H   tau(  65) = (   0.8118699 1.4870024  
>     5.5170566  )
>             66           H   tau(  66) = (   0.7019875 1.2355616  
>     5.5170566  )
>             67           H   tau(  67) = (   0.2980163 1.2355616  
>     5.5170566  )
>             68           H   tau(  68) = (   0.1881339 1.4870024  
>     5.5170566  )
>             69           Pb  tau(  69) = (   1.0000038 1.9217796  
>     5.0225086  )
>             70           I   tau(  70) = (   0.5000020 1.9401372  
>     5.0225086  )
>             71           I   tau(  71) = (   1.0000038 1.4303819  
>     5.0225086  )
>             72           I   tau(  72) = (   0.0000002 1.8772407  
>     5.5170566  )
>             73           C   tau(  73) = (  -0.4150218 0.1603553  
>     2.0527208  )
>             74           C   tau(  74) = (  -0.2451558 0.4319819  
>     2.2087050  )
>             75           C   tau(  75) = (  -0.2422954 0.2237748  
>     2.1733265  )
>             76           C   tau(  76) = (  -0.4318084 0.5359346  
>     2.1551211  )
>             77           C   tau(  77) = (  -0.0804884 0.0920926  
>     2.2271668  )
>             78           C   tau(  78) = (   0.0704299 0.4023002  
>     2.3979625  )
>             79           C   tau(  79) = (   0.0843280 0.1777180  
>     2.3246433  )
>             80           C   tau(  80) = (  -0.0965417 0.5401709  
>     2.3216025  )
>             81           C   tau(  81) = (   0.2744480 0.0706378  
>     2.2513170  )
>             82           C   tau(  82) = (   0.3931012 0.4257914  
>     2.2255358  )
>             83           C   tau(  83) = (   0.3972373 0.2291930  
>     2.1552281  )
>             84           C   tau(  84) = (   0.2639893 0.5338504  
>     2.3796795  )
>             85           C   tau(  85) = (  -0.4439138 0.7386909  
>     2.1459684  )
>             86           C   tau(  86) = (  -0.2797555 1.0615097  
>     2.1569667  )
>             87           C   tau(  87) = (  -0.2677453 0.8523788  
>     2.1882228  )
>             88           C   tau(  88) = (  -0.4363551 1.2314011  
>     2.1710336  )
>             89           C   tau(  89) = (  -0.1048337 0.7570551  
>     2.2983573  )
>             90           C   tau(  90) = (   0.0660168 1.1069478  
>     2.2676475  )
>             91           C   tau(  91) = (   0.0490337 0.8974047  
>     2.3909856  )
>             92           C   tau(  92) = (  -0.0855608 1.1516729  
>     2.1257576  )
>             93           C   tau(  93) = (   0.2473718 0.7708248  
>     2.3647407  )
>             94           C   tau(  94) = (   0.3053839 0.9967849  
>     2.0243396  )
>             95           C   tau(  95) = (   0.3742542 0.8566514  
>     2.1988956  )
>             96           C   tau(  96) = (   0.3418069 1.2210682  
>     2.0863099  )
>             97           C   tau(  97) = (  -0.4041108 1.5188867  
>     1.7359880  )
>             98           C   tau(  98) = (  -0.2399343 1.7936370  
>     1.9719763  )
>             99           C   tau(  99) = (  -0.2247255 1.6006251  
>     1.8503348  )
>            100           C   tau( 100) = (  -0.3842603 1.9640672  
>     1.9155257  )
>            101           C   tau( 101) = (  -0.0936461 1.4591817  
>     1.9376295  )
>            102           C   tau( 102) = (   0.0960162 1.7026737  
>     2.1361737  )
>            103           C   tau( 103) = (   0.0884943 1.5176961  
>     2.0381967  )
>            104           C   tau( 104) = (  -0.0894460 1.8328508  
>     2.1492063  )
>            105           C   tau( 105) = (   0.2712143 1.3993061  
>     1.9429809  )
>            106           C   tau( 106) = (   0.3808697 1.7588934  
>     1.9404992  )
>            107           C   tau( 107) = (   0.4154868 1.5615071  
>     1.8748814  )
>            108           C   tau( 108) = (   0.2862768 1.8203568  
>     2.1475771  )
>            109           Cl  tau( 109) = (  -0.0000028 0.9438992  
>     2.6646597  )
>            110           Cl  tau( 110) = (   0.1953439 1.3113248  
>     1.6804758  )
>            111           O   tau( 111) = (  -0.2795590 1.7373513  
>     2.1919488  )
>            112           O   tau( 112) = (   0.4484580 1.9035780  
>     1.7956676  )
>            113           O   tau( 113) = (   0.4160721 0.9016165  
>     2.4211389  )
>            114           O   tau( 114) = (   0.2625021 0.9147286  
>     1.8595108  )
>            115           O   tau( 115) = (   0.3809809 1.8566143  
>     2.3515614  )
>            116           O   tau( 116) = (   0.6071370 1.3829932  
>     2.2760915  )
>            117           O   tau( 117) = (  -0.3880864 1.3984041  
>     1.5899412  )
>            118           O   tau( 118) = (  -0.1162457 1.2479688  
>     1.9337466  )
>            119           O   tau( 119) = (   0.2357952 1.2312528  
>     2.2884430  )
>            120           O   tau( 120) = (   0.2012385 0.4461897  
>     2.5730642  )
>
>          number of k points=     1  Marzari-Vanderbilt smearing, width
>     (Ry)=  0.0010
>                            cart. coord. in units 2pi/alat
>             k(    1) = (   0.0000000   0.0000000   0.0000000), wk =  
>     2.0000000
>
>          Dense  grid:  1428012 G-vectors     FFT dimensions: ( 80,
>     160, 480)
>
>          Smooth grid:   504904 G-vectors     FFT dimensions: ( 60,
>     108, 360)
>
>          Estimated max dynamical RAM per process >     965.66 MB
>
>          Estimated total dynamical RAM >       7.54 GB
>      ----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D
>       The code is running with the 2D cutoff
>       Please refer to:
>       Sohier, T., Calandra, M., & Mauri, F. (2017),
>       Density functional perturbation theory for gated two-dimensional
>     heterostructures:
>       Theoretical developments and application to flexural phonons in
>     graphene.
>       Physical Review B, 96(7), 75448.
>     https://doi.org/10.1103/PhysRevB.96.075448
>      ----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D
>
>          Check: negative/imaginary core charge=   -0.000002 0.000000
>
>          Initial potential from superposition of free atoms
>          Check: negative starting charge=   -0.001132
>
>          starting charge  541.98383, renormalised to  542.00000
>
>          negative rho (up, down):  1.132E-03 0.000E+00
>          Starting wfcs are  420 randomized atomic wfcs
>          Checking if some PAW data can be deallocated...
>
>          total cpu time spent up to now is      125.6 secs
>
>          Self-consistent Calculation
>
>          iteration #  1     ecut=    50.00 Ry     beta= 0.50
>          Davidson diagonalization with overlap
>          c_bands:  3 eigenvalues not converged
>          ethr =  1.00E-02,  avg # of iterations = 40.0
>
>          negative rho (up, down):  1.031E-05 0.000E+00
>
>          total cpu time spent up to now is     2094.5 secs
>
>          total energy              =   82142.85683667 Ry
>          Harris-Foulkes estimate   =  -53335.51769720 Ry
>          estimated scf accuracy    <  111068.31785845 Ry
>
>          End of self-consistent calculation
>
>          convergence NOT achieved after   1 iterations: stopping
>
>          Writing output data file bonding_scf.save/
>
>          init_run     :    119.18s CPU    120.33s WALL (       1 calls)
>          electrons    :   1961.71s CPU   1969.12s WALL (       1 calls)
>
>          Called by init_run:
>          wfcinit      :     52.26s CPU     52.44s WALL (       1 calls)
>          potinit      :     19.26s CPU     19.33s WALL (       1 calls)
>          hinit0       :     36.63s CPU     36.68s WALL (       1 calls)
>
>          Called by electrons:
>          c_bands      :   1919.78s CPU   1923.97s WALL (       1 calls)
>          sum_band     :     28.22s CPU     30.08s WALL (       1 calls)
>          v_of_rho     :      2.26s CPU      2.35s WALL (       2 calls)
>          newd         :     20.58s CPU     22.50s WALL (       2 calls)
>          PAW_pot      :      4.00s CPU      4.00s WALL (       2 calls)
>          mix_rho      :      0.23s CPU      0.24s WALL (       1 calls)
>
>          Called by c_bands:
>          init_us_2    :      0.22s CPU      0.27s WALL (       3 calls)
>          regterg      :   1919.41s CPU   1923.60s WALL (       2 calls)
>
>          Called by sum_band:
>          sum_band:bec :      0.00s CPU      0.00s WALL (       1 calls)
>          addusdens    :     16.57s CPU     17.94s WALL (       1 calls)
>
>          Called by *egterg:
>          h_psi        :    680.38s CPU    682.69s WALL (      43 calls)
>          s_psi        :    259.57s CPU    259.75s WALL (      43 calls)
>          g_psi        :      0.93s CPU      0.94s WALL (      40 calls)
>          rdiaghg      :     52.76s CPU     52.86s WALL (      41 calls)
>
>          Called by h_psi:
>          h_psi:pot    :    679.62s CPU    681.90s WALL (      43 calls)
>          h_psi:calbec :    255.27s CPU    255.54s WALL (      43 calls)
>          vloc_psi     :    164.42s CPU    166.01s WALL (      43 calls)
>          add_vuspsi   :    259.93s CPU    260.35s WALL (      43 calls)
>
>          General routines
>          calbec       :    263.20s CPU    263.88s WALL (      44 calls)
>          fft          :      2.33s CPU      2.43s WALL (      23 calls)
>          ffts         :      0.09s CPU      0.09s WALL (       3 calls)
>          fftw         :    128.50s CPU    130.07s WALL (   10237 calls)
>          interpolate  :      0.25s CPU      0.26s WALL (       2 calls)
>          davcio       :      0.00s CPU      0.10s WALL (       3 calls)
>
>          Parallel routines
>          fft_scatt_xy :     23.50s CPU     23.55s WALL (   10263 calls)
>          fft_scatt_yz :     10.98s CPU     12.22s WALL (   10263 calls)
>
>          PWSCF        : 34m45.53s CPU    34m55.12s WALL
>
>
>        This run was terminated on:  16:10:30 10Apr2019
>
>     =------------------------------------------------------------------------------=
>        JOB DONE.
>     =------------------------------------------------------------------------------=
>
>     *-----------------------------------------------------SLURM
>     command-------------------------------------*
>
>     #!/bin/bash
>
>     #SBATCH --job-name=QE_GO-Cl_bonding_scf
>     #SBATCH --partition=cpu
>     #SBATCH --mail-type=end
>     #SBATCH --mail-user=julien_barbaud at sjtu.edu.cn
>     <mailto:--mail-user=julien_barbaud at sjtu.edu.cn>
>     #SBATCH --output=bonding.scf.slurm.out
>     #SBATCH --error=bonding.scf.slurm.err
>     #SBATCH -p cpu
>     #SBATCH -n 8
>     #SBATCH --ntasks-per-node=8
>
>     ulimit -l unlimited
>     ulimit -s unlimited
>
>     INPUT=$HOME/QE/GO-Cl/FAPBI3_bonding/scf/1x2x3_matching/bonding.scf.in
>     EXEC=$HOME/QE/qe-6.3/bin/pw.x
>
>     srun --mpi=pmi2 $EXEC -in $INPUT
>
>
>
>     _______________________________________________
>
>     users mailing list
>
>     users at lists.quantum-espresso.org  <mailto:users at lists.quantum-espresso.org>
>
>     https://lists.quantum-espresso.org/mailman/listinfo/users
>
>
>
> -- 
> Dr. rer. nat. Thomas Brumme
> Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry
> Leipzig University
> Phillipp-Rosenthal-Strasse 31
> 04103 Leipzig
> Tel:  +49 (0)341 97 36456
> email:thomas.brumme at uni-leipzig.de  <mailto:thomas.brumme at uni-leipzig.de>

-- 
Dr. rer. nat. Thomas Brumme
Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry
Leipzig University
Phillipp-Rosenthal-Strasse 31
04103 Leipzig

Tel:  +49 (0)341 97 36456

email: thomas.brumme at uni-leipzig.de

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20190412/691b3bf0/attachment.html>


More information about the users mailing list