[QE-users] How to compute spin projections?
Hongyi Zhao
hongyi.zhao at gmail.com
Thu Mar 31 03:34:48 CEST 2022
On Wed, Mar 30, 2022 at 11:51 PM Luiz Gustavo Davanse da Silveira
<lgsilveira at fisica.ufpr.br> wrote:
>
> Dear Hongyi Zhao,
>
> Thanks for your replys. I am answering them all at once. I tried projwfc.x
> but got only orbital projections. I took a look at the inout documentation
> and couldn't find an apropriate variable to compute spin projections.
> Perhaps I am missing something but I can't realize what it would be.
>
> I also tried pyprocar but it doesn't support QE non-colinear calculations
> right now.
Then, the only feasible pathway may be to do the job manually
according to the description on PROCAR file specification shown on
vasp wiki [1]:
```
For LNONCOLLINEAR=.TRUE. three additional projections for each ion are
printed and the output is similar to
ion s py pz px dxy dyz dz2 dxz x2-y2 tot
1 0.144 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.145
2 0.291 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.298
3 0.291 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.298
tot 0.727 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.740
1 -0.011 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.011
2 -0.023 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.023
3 -0.023 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.023
tot -0.057 -0.000 -0.001 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.058
1 -0.142 -0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.142
2 -0.286 0.000 -0.006 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.293
3 -0.286 0.000 -0.006 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.293
tot -0.715 0.000 -0.012 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.727
1 -0.024 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.024
2 -0.048 0.000 -0.001 0.000 0.000 0.000 -0.000 0.000 0.000 -0.049
3 -0.048 0.000 -0.001 0.000 0.000 0.000 -0.000 0.000 0.000 -0.049
tot -0.119 0.000 -0.002 0.000 0.000 0.000 -0.000 0.000 0.000 -0.121
Here the entries correspond to the projected magnetizations
1 / 2 \sum_{\mu, \nu=1}^{2} \sigma_{\mu \nu}^{j}\left\langle\chi_{n
\mathbf{k}}^{\mu} \mid Y_{l m}^{\alpha}\right\rangle\left\langle Y_{l
m}^{\alpha} \mid \chi_{n \mathbf{k}}^{\nu}\right\rangle
and are calculated for the spinor of the spinor
\left|\Psi_{n \mathbf{k}}\right\rangle=\left(\begin{array}{c}\chi_{n
\mathbf{k}}^{\uparrow} \\ \chi_{n
\mathbf{k}}^{\downarrow}\end{array}\right)
and the Pauli matrices:
\sigma^{x}=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right),
\quad \sigma^{y}=\left(\begin{array}{cc}0 & -i \\ i &
0\end{array}\right), \quad \sigma^{z}=\left(\begin{array}{cc}1 & 0 \\
0 & -1\end{array}\right)
The first set is the total (absolute) magnetization, while the
remaining three sets of entries correspond to the three directions j =
1 , 2 , 3.
```
[1] https://www.vasp.at/wiki/index.php/PROCAR
Yours,
Hongyi
More information about the users
mailing list