[QE-users] Phonon Dispersion of SrTiO3, EuTiO3 using Hubbard

simon rombauer simon.rombauer at student.uni-augsburg.de
Sun Jun 12 12:00:45 CEST 2022


Dear QE community,

I've tried to calculate the phonon-dispersion of SrTiO3 (STO) and EuTiO3 
(ETO) using the PHonon package of QE. SCF, DOS and Bandsctructure 
calculation worked well on these materials, I've used a 
Hubbard-correction for both. My scf file for STO looks as follows:

STO:
&CONTROL
     calculation = 'scf'
     outdir = './out/'
     prefix      = 'STO_gamma'
     pseudo_dir  = './nc-sr-04_pbe_stringent_upf/'
/

&SYSTEM
   ! a = 3.94513 # old value before vc-relax.x
   A = 3.93795
   degauss =   0.005
   ecutwfc =   80
   lda_plus_u=.true.
   lda_plus_u_kind = 0
   hubbard_u(1) = 0
   hubbard_u(2) = 5.6
   hubbard_u(3) = 4
   ibrav = 0
   nbnd = 33
   nat = 5
   nosym = .false.
   nspin = 2
   ntyp = 3
   occupations = 'smearing'
   starting_magnetization(1) =   1.0d-01
   starting_magnetization(2) =   1.0d-01
   starting_magnetization(3) =   4.16d-01
/

&ELECTRONS
     conv_thr =  1.d-10
     mixing_beta = 0.7
/

ATOMIC_SPECIES
Sr    87.62000  Sr.upf
Ti   47.86700  Ti.upf
O   15.99940  O.upf

CELL_PARAMETERS {alat}
    0.998180509   0.000000000   0.000000000
    0.000000000   0.998180509   0.000000000
    0.000000000   0.000000000   0.998180509

ATOMIC_POSITIONS {crystal}
Sr           0.0000000000       0.0000000000       0.0000000000
Ti           0.5000000000       0.5000000000       0.5000000000
O            0.5000000000       0.0000000000       0.5000000000
O            0.5000000000       0.5000000000       0.0000000000
O            0.0000000000       0.5000000000       0.5000000000

K_POINTS {automatic}
16 16 16 0 0 0

The pesudopotentials are the norm conserving potentials from 
pseudo-dojo.org. The bandstructure shows an energy gap of about 3.2 eV 
with these settings.

The ph.x input looks like:

phonon calculation at Gamma point.
&inputph
   outdir = './out/'
   prefix      = 'STO_gamma'
   tr2_ph = 1.0d-3
   nmix_ph = 10
   epsil = .false.
   amass(1) = 87.62000
   amass(2) = 47.86700
   amass(3)  = 15.99940
   fildyn = 'STO_phonon.dyn'
/
0 0 0

The output generated by dynmat.x after applying the acustic sum rule = 
crystal looks like:

# mode   [cm-1]    [THz]      IR
     1  -6235.76 -186.9435    0.0000
     2  -6235.76 -186.9435    0.0000
     3  -6235.76 -186.9435    0.0000
     4  -4352.85 -130.4953    0.0000
     5  -4352.85 -130.4953    0.0000
     6  -4352.85 -130.4953    0.0000
     7  -4105.78 -123.0883    0.0000
     8  -4105.78 -123.0883    0.0000
     9  -4105.78 -123.0883    0.0000
    10  -2138.73  -64.1174    0.0000
    11  -2138.73  -64.1174    0.0000
    12  -2138.73  -64.1174    0.0000
    13      0.00    0.0000    0.0000
    14      0.00    0.0000    0.0000
    15      0.00    0.0000    0.0000

This calculation alone took over 3 hours only for the gamma point. The 
input file for my scf calculation of ETO looks like

ETO:
&CONTROL
   calculation = 'scf'
   outdir = './out/'
   prefix = 'EuTiO3'
   pseudo_dir = './pseudo/'
/

&SYSTEM
   a = 3.9611945300
   degauss = 0.01
   ecutrho =   600
   ecutwfc =   75
   lda_plus_u=.true.
   lda_plus_u_kind = 0
   hubbard_u(1) = 9
   hubbard_u(2) = 0
   hubbard_u(3) = 0
   ibrav = 1
   nat = 5
   nosym = .false.
   nspin = 2
   ntyp = 3
   occupations = 'smearing'
   smearing = 'mv'
   starting_magnetization(1) =   4.1176470588d-01
   starting_magnetization(2) =   1.0000000000d-01
   starting_magnetization(3) =   4.1666666667d-01
/

&ELECTRONS
   conv_thr =   1.0000000000d-06
   electron_maxstep = 1000
   mixing_beta =   4.0000000000d-01
/

ATOMIC_SPECIES
Eu     151.964 Eu.GGA-PBE-paw-v1.0.UPF
O      15.9994 O.pbe-n-kjpaw_psl.0.1.UPF
Ti     47.867 ti_pbe_v1.4.uspp.F.UPF

ATOMIC_POSITIONS {crystal}
Eu           0.0000000000       0.0000000000       0.0000000000
Ti           0.5000000000       0.5000000000       0.5000000000
O            0.5000000000       0.5000000000       0.0000000000
O            0.5000000000       0.0000000000       0.5000000000
O            0.0000000000       0.5000000000       0.5000000000

K_POINTS {automatic}
6 6 6 0 0 0

Bandstructure shows a band gap of about 1.05 eV, the ph.x input is:

phonons of EuTiO3 at Gamma
&inputph
   prefix = 'EuTiO3'
   outdir = './out/'
   tr2_ph = 1.0d-14
   amass(1) = 151.964
   amass(2) = 15.9994
   amass(3) =  47.867
   ! epsil = .true.
   ! lraman .true.
   fildyn='EuTiO3.dynG'
  /
0 0 0

Which got me the following phonon frequencies (again asr = crystal):

# mode   [cm-1]    [THz]      IR
     1   -636.90  -19.0939    0.0000
     2   -636.90  -19.0939    0.0000
     3   -636.90  -19.0939    0.0000
     4   -547.18  -16.4041    0.0000
     5   -547.18  -16.4041    0.0000
     6   -547.18  -16.4041    0.0000
     7   -401.41  -12.0340    0.0000
     8   -401.41  -12.0340    0.0000
     9   -401.41  -12.0340    0.0000
    10     -0.00   -0.0000    0.0000
    11     -0.00   -0.0000    0.0000
    12      0.00    0.0000    0.0000
    13     64.61    1.9371    0.0000
    14     64.61    1.9371    0.0000
    15     64.61    1.9371    0.0000

I have some different questions about these results:

     1) Why is it not possible to set epsil = .true., lraman .true. ? 
They show semiconducter properties.
     2) Is it normal that the ph.x code takes a lot of comupting time 
compared to pw.x scf, nscf, bands calculations? (ETO phonon at gamma 
took over 13 h)
     3) Almost all phonon frequencies are negative, which indicates 
instabilities in the system (?), I've run vc-relax caclulations and used 
the new lattice parameters but got the same results, any idea what these 
negative frequencies could tell me?
     4) Is it possible obtain the dielectric function for these materials 
in a different way?

I hope you are still around and thank you for reading :)

Have a nice day,

Simon Rombauer
Physics student
University of Augsburg


More information about the users mailing list