[QE-users] NEB : path length is increasing

Omer Mutasim omermutasim at ymail.com
Tue Oct 27 13:26:17 CET 2020


 I mean Single-q  phonon calculation (q=0). Great, i will use a large unit cell for the isolated molecule.Regarding adsorbate molecule : you mentioned : " try to keep uppermost 1~2 atomic layers " , so what should i do for the remaining bottom layers , how prevent the perturbation of these bottom layers ?  should i delete them totally or i have to fix them by setting " 0"  ( i.e. 0  0  0) in atomic positions ? i tried the latter , but it  i get degrees of freedom of 330 ! , which means they were perturbed also !
thanks a lot for suggesting  these softwares, i will download it. 
    On Tuesday, October 27, 2020, 02:38:16 PM GMT+4, Tamas Karpati <tkarpati at gmail.com> wrote:  
 
 Omer,
Congrats!
What do you mean by Gamma point vibs. (k points or q points)?
For a single molecule (no slab at all) and large-enough cell i think
both are OK.
For rxn-on-slab I would calibrate but guess it's a good approximation.

Again, fixing the surf. atoms kills chemistry off... try to keep
uppermost 1~2 atomic layers in
(and it's not only precision, it may also affect the qualitative
description of the process).

Did you try to use TAMkin, ASE? I guess you may find them useful to
derive rate consts.
(Little Python-ing will be necessary, though.)
HTH,
  t

On Tue, Oct 27, 2020 at 9:13 AM Omer Mutasim <omermutasim at ymail.com> wrote:
>
> NEB is fine now.
> I see in your previous message you mentioned phonon calculation to check if the transition state is true (imaginary mode) .
> I need to calculate the the virbrational frequencies of adsorbate molecule , in order to estimate the partition function (for entropy ,reaction rate constants). so my question goes like:
> can i use phonon calculation at Gamma point only to get the normal modes of vibrations of molecule ?
>
> i have a large supercell (108 atoms) , can i fix the surface atoms to get the vibrations for the molecule only ?
> does fixing the surface atoms will not affect the precision of molecule's vibrations ?
>
> If you i shouldn't fix the surface atoms, How to distinguish between the vibrational frequencies of adsorbate molecule and crystal ?
> Thanks in advance
>
>
> On Monday, October 26, 2020, 10:09:25 PM GMT+4, Tamas Karpati <tkarpati at gmail.com> wrote:
>
>
> Dear Omer,
>
> You have shown a figure of a MEP. Most probably image 4 is either R (reactant)
> or P (product). In one case im2=R, im3=TS, im4=P (and im6 is the diffused P),
> the other possibility is that im2=diffused R and im4=R then im6=P (im5=TS).
> Try to judge which is which, then use R and P to start a NEB similarly to
> your very first input that you have shared (running without a CI).
>
> As for your second question, summation of barriers is not very theoretical.
> The "bottleneck" in a multistep reaction is related the highest barrier.
> If you are able to derive an Arrhenius-like (or better) rate constant (k)
> for each step, then -for consecutive reactions- your effective k = k1*k2*...
> Derive the effective barrier if you like :)
>
> HTH,
>  t
>
> On Mon, Oct 26, 2020 at 5:28 PM Omer Mutasim <omermutasim at ymail.com> wrote:
> >
> >
> > you saved my life, thanks a bunch Dr. Tamas
> >
> > I'm only interested in dissociation reaction (SO2 to SO & O) , so i should only consider image 1 & 2 only, based on AXSF file , for running NEB , right ?
> > what are these two steps you have seen ?
> >
> > i'm doing micro-kinetic modeling for reaction mechanism, so in this case , should i consider the summation of " dissociation barrier " & "diffusion barrier for dissociated SO & O to most stable sites "  as the activation barrier for the elementary reaction step SO2 = SO + O  ? or i should only consider the dissociation barrier ?
> >
> > Regarding AXSF, it is automatically generated by Quantum Espresso v. 6.4
> >
> >
> >
> >
> >
> >
> >
> > On Monday, October 26, 2020, 07:56:50 PM GMT+4, Tamas Karpati <tkarpati at gmail.com> wrote:
> >
> >
> > Dear Omer,
> >
> > 1, SO (being "locally" linear) is not really rotating (just nomenclature)
> >  and such movements are unimportant in this case, I think
> > 2, as for the NEB: as I said, choose the beginning and end images
> >    of what you consider eg. step 1 and run a NEB like before,
> >    except for replacing your original 2 structures by the new duett.
> > 2b, do the same for the other elementary step to zoom-in MEP for the
> >    dissociation barrier (I think I saw two steps in your MEP).
> >
> > Attaching the AXSF file was useful, thanks!
> >
> > Please let me ask a stupid question:  how do you create such a useful
> > AXSF file from the NEB job's results? (Sorry for such a trivial one!!)
> >
> > Regards,
> >  t
> >
> >
> > On Mon, Oct 26, 2020 at 4:20 PM Omer Mutasim <omermutasim at ymail.com> wrote:
> > >
> > >
> > > Dear Dr. Tamas
> > > your ideas are very helpful. Your are right.
> > > i have just noticed that  it is a surface reaction + diffusion of dissociated products (SO & O) to most stable sites ( one reaction + 2 diffusion step). Dissociation occurs in image 2 immediately ,  image 3,4,5 shows diffusion of SO to most stable site (a bit far site , 3 Angstrom), (image 5 is rotation of SO), image 5 shows diffusion of "O" and again rotation of "SO" .
> > > So how to break down this steps into simpler steps than can be easily handle by NEB ?
> > > how to deal many rotations of "SO" molecule as it takes most of the images ?
> > >
> > > attached is axsf output file for the neb, please view it with xcrysden
> > > On Monday, October 26, 2020, 06:31:22 PM GMT+4, Tamas Karpati <tkarpati at gmail.com> wrote:
> > >
> > >
> > > please note that in case your preoptimized first and/or last structures
> > > are not the direct reactant and product structures but a R+diffusion
> > > or P+diffusion step results, your MEP would (and it does) look
> > > as if you have modelled a two (or even more) steps "reaction" even if
> > > just one of them is actually "chemistry".
> > >
> > > On Mon, Oct 26, 2020 at 3:11 PM Omer Mutasim <omermutasim at ymail.com> wrote:
> > > >
> > > > yes,  there is a barrier for the reverse reaction.
> > > > i have check the initial & final structure again , it was relaxed until force is less than 0.003.
> > > > I do also agree with you that i should use 1 neb with barrier,  and this is what i'm doing exactly.
> > > > but for this dissociation reaction step (SO2 = SO + O), i think this is the simplest elementary step i can get form SO2 molecule , it can't be broken down into a simpler elementary  reaction steps.
> > > >
> > > > One this i should mention is that : for the initial structure (SO2*) , I didn't consider the most stable adsorption site for SO2* (E_ads=-0.3 eV), there is  neighboring site that is a bit less stable (E_ads = -0.2 eV) which i've used for NEB. I didn't consider the former (most stable site) because the distance between molecule and surface is 3.5 A , , however for the less stable site , the distance is 1.5 A, so i thought it is not proper to consider this physisorbed state in NEB, Please correct me if i'm wrong.
> > > > thanks a lot for your help.
> > > >
> > > > Regards
> > > >
> > > > On Monday, October 26, 2020, 05:00:26 PM GMT+4, Tamas Karpati <tkarpati at gmail.com> wrote:
> > > >
> > > >
> > > > Dear Omer,
> > > >
> > > > I'd like to underline what Antoine has said and suggest that
> > > > both your first and last structures are saddle points (of order K and L,
> > > > respectively), rather than minima. Also I agree that your reaction
> > > > is not barrierless -in accordance with chemical intuition.
> > > >
> > > > To make it simple, I recommend
> > > > - make your 2nd image the first,
> > > > - make your 6th image the last,
> > > > - do use more images (even for a single step reaction,
> > > >  but your MEP indicates two TS-es meaning a 2 step reaction
> > > >  which -on more elaboration- may turn out to be an N step one;
> > > >  only you need more points to see its real E-profile).
> > > > - rerun your NEB job.
> > > >
> > > > In fact you should check for imaginary second derivatives by the Phonon code
> > > > to ensure about each minima/maxima/TS being what they look in such a MEP.
> > > > Of course, it is painfully slow and many just skip this step.
> > > >
> > > > Other ideas:
> > > > - check the geometry of your 3 local minima and 2 TS-es
> > > >  to see if they correspond to chemically rational structures.
> > > > - if they look so, decide whether the second minimum is really
> > > >  your product, and if it is so then this should be your last image
> > > >  (and not the 6th as I said above) for rerunning your NEB.
> > > > - of course, you can model a multistep reaction by a single NEB job,
> > > >  choose the approach that best serves your postprocessing task.
> > > >
> > > > Hope this helps,
> > > >  t
> > > >
> > > > On Mon, Oct 26, 2020 at 1:40 PM Antoine Jay <ajay at laas.fr> wrote:
> > > > >
> > > > > There is an energy barrier:
> > > > > the one between your intermediate minima and your  final state.
> > > > > There is no barrier between initial and intermediate minima.
> > > > > You should wonder why you have an intermediate minima that is lower in energy (<0.4eV) than the final inserted molecule, this is why I was asking if it was enough relaxed.
> > > > > Maybe the first exothermic reaction gives enough energy for the second...
> > > > > But for sure, when you have such a multi-barriers reaction, a 7 images neb is not enough.
> > > > > If you need accurate results, it is better to have 1 neb per barrier, as you have 1 CI per path.
> > > > >
> > > > > Regards,
> > > > >
> > > > > Antoine Jay
> > > > > LAAS-CNRS
> > > > > Toulouse, France
> > > > >
> > > > > Le Lundi, Octobre 26, 2020 09:10 CET, Omer Mutasim <omermutasim at ymail.com> a écrit:
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > > Dear Dr. Jay
> > > > > I have relaxed the initial and final structures before neb.
> > > > > Regarding simulation box, i'm using sqrt(3)*sqrt(3) supercell, the other five reaction steps converged well.
> > > > > However, i have seen in the literature that similar catalyst resulted in such barrier-less dissociation.
> > > > > So my question goes like : with this oscillated MEP , can i conclude it is barrier-less reaction ? or it is even necessary for barrier-less step to have no oscillation ?
> > > > > does changing the adsorption site of the reactant (SO2) to less stable site might solve the issue ?
> > > > >
> > > > > Regards
> > > > > On Monday, October 26, 2020, 11:25:36 AM GMT+4, Antoine Jay <ajay at laas.fr> wrote:
> > > > >
> > > > >
> > > > > Dear Omer,
> > > > > I think your initial and final minima have not been well relaxed.
> > > > > When you fix the initial and final structures in a neb you must have relaxed them before, otherwise, you will have negative energy barriers.
> > > > > Moreover, you may have rotation of molecules that return local minima if your simulation box is too small.
> > > > >
> > > > > Regards,
> > > > >
> > > > > Antoine Jay
> > > > > LAAS-CNRS
> > > > > Toulouse, France
> > > > >
> > > > >
> > > > > Le Lundi, Octobre 26, 2020 06:39 CET, Omer Mutasim <omermutasim at ymail.com> a écrit:
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > > Thanks a lot Dr. Tamas & Dr. Jay. , it is very efficient procedure, it worked for me now for all reaction steps. cheers
> > > > >
> > > > > However for one elementary step , particularly SO2 dissociation ( SO2 = SO+O ) i got the following activation barrier, (it hasn't finished yet, but expected to  remain around these values since it doesn't change much):
> > > > >
> > > > >  ------------------------------ iteration 297 ------------------------------
> > > > >
> > > > >      activation energy (->) =  0.000000 eV
> > > > >      activation energy (<-) =  0.308512 eV
> > > > >
> > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > >
> > > > >          1    -92402.4972907            0.036606            T
> > > > >          2    -92402.8008646            0.020347            F
> > > > >          3    -92402.6789202            0.048720            F
> > > > >          4    -92403.2726990            0.102631            F
> > > > >          5    -92403.0642888            0.050277            F
> > > > >          6    -92403.2377599            0.067121            F
> > > > >          7    -92402.8058032            0.029355            T
> > > > >      activation energy (->) =  0.000000 eV
> > > > >      activation energy (<-) =  0.308512 eV
> > > > >
> > > > >
> > > > > Attached is the MEP curve. As you see in MEP graph , there is oscillation in energies.
> > > > > is it normal to get this oscillated MEP curve for such barrier-less reaction step ? if not, how to get rid of this oscillations ?
> > > > > does using "CI" can increase this barrier a bit ?
> > > > >
> > > > > Thanks in advance
> > > > >
> > > > > Regards
> > > > > On Wednesday, October 21, 2020, 11:04:14 PM GMT+4, Omer Mutasim <omermutasim at ymail.com> wrote:
> > > > >
> > > > >
> > > > > Very helpful ideas.
> > > > > But after pre-converging with inexpensive parameters, i will get first & last image that are different than my actual images with higher parameters ( k-pointss, cutoff,..)
> > > > > So then how i can use this pre-converged path for my actual settings?
> > > > >
> > > > > Sent from Yahoo Mail for iPhone
> > > > >
> > > > >
> > > > > On Wednesday, October 21, 2020, 3:06 PM, Tamas Karpati <tkarpati at gmail.com> wrote:
> > > > >
> > > > > Dear Omar,
> > > > >
> > > > > Hope it helps, just some ideas:
> > > > > - I could tell more if you would attach the whole input file (ie. the
> > > > > structures).
> > > > > - Without knowing the structures only I can give some hints:
> > > > >  -- Try using smaller PW basis and lower ecutwfc, ecutrho to speed up
> > > > > your simulation.
> > > > >  -- When you obtain something more reliable result, you can change
> > > > > back to the higher basis.
> > > > >  -- Try leaving opt_scheme at its default value.
> > > > >  -- For such a reaction (dissociation of such a polarized molecule) you should
> > > > >    expect a barrier, therefore CI_scheme should be anything except for no-CI.
> > > > >  -- The best is if you can specify the CI manually in the
> > > > > CLIMBING_IMAGES section
> > > > >    (choose the CI_scheme accordingly).
> > > > > Bests,
> > > > >  t
> > > > >
> > > > > On Tue, Oct 20, 2020 at 6:53 PM Omer Mutasim <omermutasim at ymail.com> wrote:
> > > > > >
> > > > > > Dear All
> > > > > > I'm doning NEB for dissociation reaction of SO2 to SO +O. But it is not converging for more than a week, and the path length is increasing.
> > > > > > Please tell me what is wrong in my input file:
> > > > > >
> > > > > > below is the input & output files:
> > > > > >
> > > > > > Input file:
> > > > > >
> > > > > > BEGIN
> > > > > > BEGIN_PATH_INPUT
> > > > > > &PATH
> > > > > >  restart_mode      = 'restart'
> > > > > >  string_method    = 'neb',
> > > > > >  nstep_path        = 800,
> > > > > >  ds                = 1.D0,
> > > > > >  opt_scheme        = "broyden",
> > > > > >  num_of_images    = 7,
> > > > > >  CI_scheme        = 'no-CI',
> > > > > >  path_thr          = 0.05D0,
> > > > > >
> > > > > > /
> > > > > > END_PATH_INPUT
> > > > > > BEGIN_ENGINE_INPUT
> > > > > > &CONTROL
> > > > > >    calculation  = "relax"
> > > > > > prefix = 'SO2_neb'
> > > > > >    outdir = './outdir'
> > > > > >    pseudo_dir = '/home/yQE-test/pseudo/'
> > > > > > restart_mode = 'from_scratch'
> > > > > >    forc_conv_thr =  1.0e-03
> > > > > > etot_conv_thr = 1e-04
> > > > > >    nstep        = 200
> > > > > >    !tefield = .TRUE
> > > > > > !dipfield = .TRUE
> > > > > > /
> > > > > >
> > > > > > &SYSTEM
> > > > > > ibrav = 0
> > > > > >    ecutrho                  =  270
> > > > > >    ecutwfc                  =  45
> > > > > >    nat                      = 111
> > > > > >    ntyp                      = 4
> > > > > > occupations='smearing',smearing='gaussian',degauss=0.005
> > > > > > vdw_corr = 'DFT-D2'
> > > > > > !edir = 3 , emaxpos = 0.6808, eopreg = 0.08 , eamp = 0.001,
> > > > > >    nspin = 2
> > > > > > starting_magnetization(1)=  0.01
> > > > > >
> > > > > > /
> > > > > > &ELECTRONS
> > > > > >    conv_thr        = 1e-06
> > > > > >    electron_maxstep = 200
> > > > > > mixing_mode ='local-TF'
> > > > > >    mixing_beta      =  0.3
> > > > > >
> > > > > > /
> > > > > >
> > > > > > &IONS
> > > > > > /
> > > > > >
> > > > > > K_POINTS {automatic}
> > > > > > 3 3 1 0 0 1
> > > > > >
> > > > > > ATOMIC_SPECIES
> > > > > > Ni 58.69340 Ni.pbe-n-rrkjus_psl.0.1.UPF
> > > > > > P 30.97376 P.pbe-n-rrkjus_psl.1.0.0.UPF
> > > > > > S 32.065      S.pbe-n-rrkjus_psl.1.0.0.UPF
> > > > > > O 15.9999    O.pbe-n-rrkjus_psl.1.0.0.UPF
> > > > > > CELL_PARAMETERS {angstrom}
> > > > > >        11.765383541833        0.0000000000        0.0000000000
> > > > > >        -5.88269177091652        10.1891210324947    0.0000000000
> > > > > >        0.0000000000        0.0000000000        30.9938690567585
> > > > > > BEGIN_POSITIONS
> > > > > > FIRST_IMAGE
> > > > > > ATOMIC_POSITIONS (angstrom)
> > > > > > S      -1.181561037  6.155418563  12.124345096
> > > > > > O      -1.100425541  4.672437254  11.356300976
> > > > > > O        0.190308001  6.839217965  11.448732238
> > > > > > Ni      -2.738525121  4.763450297  0.239145520
> > > > > > Ni      3.139579474  1.358483744  0.232252034
> > > > > > Ni      3.135766403  8.150575392  0.235327906
> > > > > > Ni      -4.673593720  8.104467836  1.780118367
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > >
> > > > > > output file:
> > > > > >
> > > > > > Program NEB v.6.4.1 starts on 16Oct2020 at 11:35:32
> > > > > >
> > > > > >      This program is part of the open-source Quantum ESPRESSO suite
> > > > > >      for quantum simulation of materials; please cite
> > > > > >          "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
> > > > > >          "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);
> > > > > >          URL http://www.quantum-espresso.org",
> > > > > >      in publications or presentations arising from this work. More details at
> > > > > >      http://www.quantum-espresso.org/quote
> > > > > >
> > > > > >      Parallel version (MPI), running on    80 processors
> > > > > >
> > > > > >      MPI processes distributed on    5 nodes
> > > > > >      R & G space division:  proc/nbgrp/npool/nimage =      80
> > > > > >
> > > > > >      parsing_file_name: input.in
> > > > > >      Reading input from pw_1.in
> > > > > >      Message from routine read_upf::
> > > > > >
> > > > > >
> > > > > >      initial path length          = 11.3145 bohr
> > > > > >      initial inter-image distance  =  1.8857 bohr
> > > > > >
> > > > > >      string_method                =    neb
> > > > > >      restart_mode                  =    from_scratch
> > > > > >      opt_scheme                    =    broyden
> > > > > >      num_of_images                =    7
> > > > > >      nstep_path                    =    800
> > > > > >      CI_scheme                    =    no-CI
> > > > > >      first_last_opt                =    F
> > > > > >      use_freezing                  =    F
> > > > > >      ds                            =    1.0000 a.u.
> > > > > >      k_max                        =    0.1000 a.u.
> > > > > >      k_min                        =    0.1000 a.u.
> > > > > >      suggested k_max              =    0.6169 a.u.
> > > > > >      suggested k_min              =    0.6169 a.u.
> > > > > >      path_thr                      =    0.0500 eV / A
> > > > > >
> > > > > >      ------------------------------ iteration  1 ------------------------------
> > > > > >
> > > > > >      tcpu =      6.2    self-consistency for image  1
> > > > > >      tcpu =  3675.5    self-consistency for image  2
> > > > > >      tcpu =  7662.5    self-consistency for image  3
> > > > > >      tcpu =  11422.7    self-consistency for image  4
> > > > > >      tcpu =  15346.3    self-consistency for image  5
> > > > > >      tcpu =  19108.7    self-consistency for image  6
> > > > > >      tcpu =  22571.1    self-consistency for image  7
> > > > > >
> > > > > >      activation energy (->) =  70.216194 eV
> > > > > >      activation energy (<-) =  71.022062 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92468.8536637          23.505267            F
> > > > > >          3    -92442.9691259          150.213122            F
> > > > > >          4    -92406.7311409          330.353055            F
> > > > > >          5    -92431.0052901          207.333777            F
> > > > > >          6    -92469.0661237          51.663167            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 11.314 bohr
> > > > > >      inter-image distance =  1.886 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  2 ------------------------------
> > > > > >
> > > > > >      tcpu =  26119.7    self-consistency for image  2
> > > > > >      tcpu =  28731.5    self-consistency for image  3
> > > > > >      tcpu =  31027.4    self-consistency for image  4
> > > > > >      tcpu =  34094.2    self-consistency for image  5
> > > > > >      tcpu =  36988.0    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  22.531451 eV
> > > > > >      activation energy (<-) =  23.337319 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92469.5101428          22.300995            F
> > > > > >          3    -92454.4158842          70.627594            F
> > > > > >          4    -92461.1206812          34.307062            F
> > > > > >          5    -92464.4669859          46.783708            F
> > > > > >          6    -92471.4896125          37.765708            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 11.384 bohr
> > > > > >      inter-image distance =  1.897 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  3 ------------------------------
> > > > > >
> > > > > >      tcpu =  39172.0    self-consistency for image  2
> > > > > >      tcpu =  41888.0    self-consistency for image  3
> > > > > >      tcpu =  44777.8    self-consistency for image  4
> > > > > >      tcpu =  47642.0    self-consistency for image  5
> > > > > >      tcpu =  50615.2    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  13.435341 eV
> > > > > >      activation energy (<-) =  14.241209 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92471.6434742          16.119604            F
> > > > > >          3    -92463.5119937          28.367753            F
> > > > > >          4    -92468.1466546          16.740841            F
> > > > > >          5    -92472.7705146          11.019872            F
> > > > > >          6    -92475.3040517          10.662908            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 11.502 bohr
> > > > > >      inter-image distance =  1.917 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  4 ------------------------------
> > > > > >
> > > > > >      tcpu =  53323.8    self-consistency for image  2
> > > > > >      tcpu =  56077.9    self-consistency for image  3
> > > > > >      tcpu =  59014.9    self-consistency for image  4
> > > > > >      tcpu =  61990.6    self-consistency for image  5
> > > > > >      tcpu =  64608.8    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  6.530687 eV
> > > > > >      activation energy (<-) =  7.336554 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92474.0378392            7.910468            F
> > > > > >          3    -92470.4166483          13.061889            F
> > > > > >          4    -92471.2528453            9.923078            F
> > > > > >          5    -92474.2165523            4.209611            F
> > > > > >          6    -92476.2787664            3.450159            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 11.724 bohr
> > > > > >      inter-image distance =  1.954 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  5 ------------------------------
> > > > > >
> > > > > >      tcpu =  67273.9    self-consistency for image  2
> > > > > >      tcpu =  70152.2    self-consistency for image  3
> > > > > >      tcpu =  73153.1    self-consistency for image  4
> > > > > >      tcpu =  76203.5    self-consistency for image  5
> > > > > >      tcpu =  78824.8    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  3.710859 eV
> > > > > >      activation energy (<-) =  4.516727 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92475.5387437            3.615458            F
> > > > > >          3    -92473.5622985            4.695416            F
> > > > > >          4    -92473.2364760            5.734324            F
> > > > > >          5    -92474.4833513            2.877608            F
> > > > > >          6    -92476.4425910            2.876700            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 12.038 bohr
> > > > > >      inter-image distance =  2.006 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  6 ------------------------------
> > > > > >
> > > > > >      tcpu =  81355.0    self-consistency for image  2
> > > > > >      tcpu =  84402.5    self-consistency for image  3
> > > > > >      tcpu =  87564.5    self-consistency for image  4
> > > > > >      tcpu =  90568.2    self-consistency for image  5
> > > > > >      tcpu =  93110.5    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  2.560838 eV
> > > > > >      activation energy (<-) =  3.366706 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.0900010            1.040106            F
> > > > > >          3    -92474.7832671            2.988289            F
> > > > > >          4    -92474.3864972            2.085630            F
> > > > > >          5    -92474.8266397            1.998808            F
> > > > > >          6    -92476.6377600            0.667994            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 12.364 bohr
> > > > > >      inter-image distance =  2.061 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  7 ------------------------------
> > > > > >
> > > > > >      tcpu =  95248.7    self-consistency for image  2
> > > > > >      tcpu =  98189.3    self-consistency for image  3
> > > > > >      tcpu = 101337.9    self-consistency for image  4
> > > > > >      tcpu = 104423.7    self-consistency for image  5
> > > > > >      tcpu = 107076.7    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  2.125802 eV
> > > > > >      activation energy (<-) =  2.931670 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.0736630            1.319140            F
> > > > > >          3    -92475.4151167            1.955048            F
> > > > > >          4    -92474.8215329            1.921925            F
> > > > > >          5    -92475.0627346            2.135695            F
> > > > > >          6    -92476.7117640            0.696381            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 12.868 bohr
> > > > > >      inter-image distance =  2.145 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  8 ------------------------------
> > > > > >
> > > > > >      tcpu = 108885.3    self-consistency for image  2
> > > > > >      tcpu = 111194.4    self-consistency for image  3
> > > > > >      tcpu = 113961.2    self-consistency for image  4
> > > > > >      tcpu = 116506.3    self-consistency for image  5
> > > > > >      tcpu = 118361.2    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  2.073805 eV
> > > > > >      activation energy (<-) =  2.879673 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.1622863            0.861666            F
> > > > > >          3    -92475.4162307            2.192183            F
> > > > > >          4    -92474.8735300            1.631538            F
> > > > > >          5    -92475.0684015            1.824977            F
> > > > > >          6    -92476.7113576            0.606060            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 12.633 bohr
> > > > > >      inter-image distance =  2.105 bohr
> > > > > >
> > > > > >
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > > .
> > > > > >  reading file 'SO2_neb.path'
> > > > > >
> > > > > >
> > > > > >      string_method                =    neb
> > > > > >      restart_mode                  =    restart
> > > > > >      opt_scheme                    =    broyden
> > > > > >      num_of_images                =    7
> > > > > >      nstep_path                    =    800
> > > > > >      CI_scheme                    =    no-CI
> > > > > >      first_last_opt                =    F
> > > > > >      use_freezing                  =    F
> > > > > >      ds                            =    1.0000 a.u.
> > > > > >      k_max                        =    0.1000 a.u.
> > > > > >      k_min                        =    0.1000 a.u.
> > > > > >      suggested k_max              =    0.6169 a.u.
> > > > > >      suggested k_min              =    0.6169 a.u.
> > > > > >      path_thr                      =    0.0500 eV / A
> > > > > >
> > > > > >      ------------------------------ iteration  26 ------------------------------
> > > > > >
> > > > > >      tcpu =      6.2    self-consistency for image  2
> > > > > >      tcpu =  3713.3    self-consistency for image  3
> > > > > >      tcpu =  7137.5    self-consistency for image  4
> > > > > >      tcpu =  10796.2    self-consistency for image  5
> > > > > >      tcpu =  14447.3    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  0.640765 eV
> > > > > >      activation energy (<-) =  1.446632 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.3065704            0.250516            F
> > > > > >          3    -92477.0673165            0.278078            F
> > > > > >          4    -92476.7787332            0.431860            F
> > > > > >          5    -92476.4800774            0.453182            F
> > > > > >          6    -92476.5576488            0.296200            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 17.545 bohr
> > > > > >      inter-image distance =  2.924 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  27 ------------------------------
> > > > > >
> > > > > >      tcpu =  18237.5    self-consistency for image  2
> > > > > >      tcpu =  20736.0    self-consistency for image  3
> > > > > >      tcpu =  23008.1    self-consistency for image  4
> > > > > >      tcpu =  25721.8    self-consistency for image  5
> > > > > >      tcpu =  28310.3    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  0.643277 eV
> > > > > >      activation energy (<-) =  1.449145 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.3040583            0.235899            F
> > > > > >          3    -92477.0080434            0.474599            F
> > > > > >          4    -92476.8143156            0.678632            F
> > > > > >          5    -92476.4592005            0.597470            F
> > > > > >          6    -92476.4827638            0.224064            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 18.367 bohr
> > > > > >      inter-image distance =  3.061 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  28 ------------------------------
> > > > > >
> > > > > >      tcpu =  30382.0    self-consistency for image  2
> > > > > >      tcpu =  32498.8    self-consistency for image  3
> > > > > >      tcpu =  34597.5    self-consistency for image  4
> > > > > >      tcpu =  37250.7    self-consistency for image  5
> > > > > >      tcpu =  39649.7    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  0.651733 eV
> > > > > >      activation energy (<-) =  1.457601 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.2956021            0.236096            F
> > > > > >          3    -92476.9388664            0.680956            F
> > > > > >          4    -92476.8025379            0.874373            F
> > > > > >          5    -92476.3933083            0.734403            F
> > > > > >          6    -92476.4272820            0.239132            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 19.115 bohr
> > > > > >      inter-image distance =  3.186 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  29 ------------------------------
> > > > > >
> > > > > >      tcpu =  41622.7    self-consistency for image  2
> > > > > >      tcpu =  43787.2    self-consistency for image  3
> > > > > >      tcpu =  45892.1    self-consistency for image  4
> > > > > >      tcpu =  48482.6    self-consistency for image  5
> > > > > >      tcpu =  50617.1    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  0.661553 eV
> > > > > >      activation energy (<-) =  1.467420 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.2857825            0.249692            F
> > > > > >          3    -92476.8823826            0.778237            F
> > > > > >          4    -92476.7843580            1.002202            F
> > > > > >          5    -92476.3323697            0.748960            F
> > > > > >          6    -92476.3885082            0.238984            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 19.742 bohr
> > > > > >      inter-image distance =  3.290 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  30 ------------------------------
> > > > > >
> > > > > >      tcpu =  52474.3    self-consistency for image  2
> > > > > >      tcpu =  54679.9    self-consistency for image  3
> > > > > >      tcpu =  57012.5    self-consistency for image  4
> > > > > >      tcpu =  59877.3    self-consistency for image  5
> > > > > >      tcpu =  62490.2    self-consistency for image  6
> > > > > >
> > > > > >      activation energy (->) =  0.704760 eV
> > > > > >      activation energy (<-) =  1.510628 eV
> > > > > >
> > > > > >      image        energy (eV)        error (eV/A)        frozen
> > > > > >
> > > > > >          1    -92476.9473351            0.023792            T
> > > > > >          2    -92476.2668397            0.342411            F
> > > > > >          3    -92476.7810889            0.907920            F
> > > > > >          4    -92476.7414553            1.153276            F
> > > > > >          5    -92476.2425749            0.898295            F
> > > > > >          6    -92476.3370447            0.341313            F
> > > > > >          7    -92477.7532028            0.024858            T
> > > > > >
> > > > > >      path length          = 20.745 bohr
> > > > > >      inter-image distance =  3.457 bohr
> > > > > >
> > > > > >      ------------------------------ iteration  31 ------------------------------
> > > > > >
> > > > > >      tcpu =  64431.3    self-consistency for image  2
> > > > > >      tcpu =  66430.0    self-consistency for image  3
> > > > > >      tcpu =  68491.4    self-consistency for image  4
> > > > > >      tcpu =  70987.8    self-consistency for image  5
> > > > > >
> > > > > >
> > > > > >
> > > > > >
> > > > > > _______________________________________________
> > > > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > > > users mailing list users at lists.quantum-espresso.org
> > > > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > > > _______________________________________________
> > > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > > users mailing list users at lists.quantum-espresso.org
> > > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > >
> > > > > _______________________________________________
> > > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > > users mailing list users at lists.quantum-espresso.org
> > > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > > >
> > > > >
> > > > >
> > > > >  _______________________________________________
> > > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > > users mailing list users at lists.quantum-espresso.org
> > > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > > _______________________________________________
> > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > users mailing list users at lists.quantum-espresso.org
> > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > > _______________________________________________
> > > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > > users mailing list users at lists.quantum-espresso.org
> > > > https://lists.quantum-espresso.org/mailman/listinfo/users
> > > _______________________________________________
> > > Quantum ESPRESSO is supported by MaX (www.max-centre.eu)
> > > users mailing list users at lists.quantum-espresso.org
> > > https://lists.quantum-espresso.org/mailman/listinfo/users  
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20201027/569f4c4a/attachment.html>


More information about the users mailing list