[QE-users] [QE users] pseudopotential hardness and transferability

Nicola Marzari nicola.marzari at epfl.ch
Thu Apr 2 13:39:31 CEST 2020




Dear Aldo,


very worthwhile work! Also very hard (pun intended) - pseudopotential 
generation is not an easy task. In particular, you can make things 
softer, but less accurate, and that's not one wants. Also, being at a 
cutoff that converges the total energy is not superinteresting - we 
typically want stresses, forces, et al to be both converged (easy to 
test), and accurate (more difficult, you need to compare with 
all-electron calculations, ideally in some real-life solid state systems).

If you go to https://www.materialscloud.org/discover/sssp/ you could 
acquaint yourself with a couple of papers on verification (see section
"How to cite") and on pseudopotential generation (see section 
"Acknolwedgments").

You could also try out the C and N pseudopotentials from the PBE or
PBEsol SSSP efficiency library, and see if you really need to have 
larger cutoffs than those suggested (45/360 Ry for ecutwfc and ecutrho 
respectively (i.e. a dual of 8) for the carbon pseudopotential, taken as 
PAW from pslibrary 1.0, and 60/480 Ry for N, generated by me). The delta 
value for the elemental solid is a first measure of how good things are 
with respect to all electron results.

				nicola





On 02/04/2020 13:15, Aldo Ugolotti wrote:
> Dear QE users,
> 
> I am actually working on a system with C and N atoms. Checking the 
> convergence of the total energy for finding the optimal values for the 
> cutoffs (i.e. DE ~ 1mRy), I found that, despite in the atomic case the 
> suggested values (for example the wfc cutoff are ~ 46 Ry for both) are 
> good enough, in a sample of my system which is already relaxed (and 
> whose geometry is in good agreement with reported results) the same 
> convergence check determines a cutoff which is, again for example for 
> the wavefunction, 2 to 3 times larger.
> 
> As I tried to modify the pseudo to make it softer, I have also run some 
> transferability tests, which I am curious to hear your opinion about. In 
> particular, the tests were running fine for the testing configurations 
> with less electrons (e.g. 2s2 2p1 for C) but there were problems with 
> tests with more electrons (e.g. 2s2 2p3 for C). In those cases the scf 
> cycles did not converge at all, both at AE or PS level.
> 
> I found the same result with the pseudo US,PAW in the pslibrary of 
> different versions, namely 1.0.0, 0.3.1 and 0.1. I also tried to change 
> the radii, the local potential (adding a 3D empty orbital), the 
> configuration (e.g, Ztot=5.5, Zval 1.5 for C) or the pseudization recipe 
> (TM/RRKJUS).
> 
> Hence, I got few questions:
> 
> i) is it really a transferability issue, or do I need "only" to get 
> those scf cycles to converge? how?
> 
> ii) if the pseudo is not good to represent electronic configurations 
> with more electrons, that would be a viable explanation as to why the 
> cutoffs for a sample systems are so much larger than the atomic cases?
> 
> Below I am reporting the output for the test of the configtf(2)='2s2 2p3'
> 
> 
>       Message from routine scf:
>       warning: convergence not achieved
>       --------------------------- All-electron run 
> ----------------------------
> 
> C
>       scalar relativistic calculation
> 
>       atomic number is  6.00
>       dft =SLA PW PBX PBC   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
>       Exchange-correlation      = SLA PW PBX PBC ( 1  4  3  4 0 0)
>       mesh =1073 r(mesh) = 100.30751 a.u. xmin = -7.00 dx = 0.01250
>       1 Ry =  13.60569193 eV, c = 137.03599966
> 
>       n l     nl                  e(Ry)          e(Ha) e(eV)
>       1 0     1S 1( 2.00)       -19.6664        -9.8332 -267.5745
>       2 0     2S 1( 2.00)        -0.6297        -0.3148 -8.5669
>       2 1     2P 1( 3.00)        -0.0290        -0.0145 -0.3951
> 
>       final scf error:  2.4E-01 reached in 201 iterations
> 
>       Etot =     -78.638531 Ry,     -39.319266 Ha,   -1069.931632 eV
> 
>       Ekin =      73.218424 Ry,      36.609212 Ha,     996.187324 eV
>       Encl =    -182.081805 Ry,     -91.040902 Ha,   -2477.348944 eV
>       Eh   =      40.989732 Ry,      20.494866 Ha,     557.693668 eV
>       Exc  =     -10.764883 Ry,      -5.382441 Ha,    -146.463680 eV
> 
> 
>       normalization and overlap integrals
> 
>       s(1S/1S) =  1.000000  <r> =   0.2707  <r2> = 0.0993  r(max) =   
> 0.1730
>       s(1S/2S) = -0.000112
>       s(2S/2S) =  1.000000  <r> =   1.6236  <r2> = 3.2283  r(max) =   
> 1.2315
>       s(2P/2P) =  1.000000  <r> =   2.1244  <r2> = 6.4268  r(max) =   
> 1.2470
> 
>       ------------------------ End of All-electron run 
> ------------------------
> 
>       Message from routine run_pseudo:
>       Warning: convergence not achieved
> 
>       ---------------------- Testing the pseudopotential 
> ----------------------
> 
> C
>       scalar relativistic calculation
> 
>       atomic number is  6.00   valence charge is  4.00
>       dft =SLA PW PBX PBC   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
>       mesh =1073 r(mesh) = 100.30751 xmin = -7.00 dx = 0.01250
> 
>       n l     nl             e AE (Ry)        e PS (Ry)    De AE-PS (Ry)
>       1 0     2S   1( 2.00)       -0.62966       -0.17919 -0.45046  !
>       2 1     2P   1( 3.00)       -0.02904       -0.00000 -0.02904  !
> 
>       eps = 3.2E-04  iter =201
> 
>       Etot =     -78.638531 Ry,     -39.319266 Ha,   -1069.931632 eV
>       Etotps =   -18.974270 Ry,      -9.487135 Ha,    -258.158068 eV
>       dEtot_ae =      -3.108582 Ry
>       dEtot_ps =      -1.208418 Ry,   Delta E=      -1.900164 Ry
> 
>       Ekin =      10.222924 Ry,       5.111462 Ha,     139.089950 eV
>       Encl =     -31.022876 Ry,     -15.511438 Ha,    -422.087699 eV
>       Ehrt =      12.620743 Ry,       6.310371 Ha,     171.713935 eV
>       Ecxc =     -10.795060 Ry,      -5.397530 Ha,    -146.874254 eV
>       (Ecc =      -0.958640 Ry,      -0.479320 Ha,     -13.042955 eV)
> 
>       ---------------------- End of pseudopotential test 
> ----------------------
> 
> 
>       -------------- Test with a basis set of Bessel functions ----------
> 
>       Box size (a.u.) :   30.0
> 
>       Cutoff (Ry) :   30.0
>                             N = 1       N = 2       N = 3
>       E(L=0) =        -0.1788 Ry    0.1213 Ry    0.1854 Ry
>       E(L=1) =         0.1263 Ry    0.1949 Ry    0.2715 Ry
> 
>       Cutoff (Ry) :   60.0
>                             N = 1       N = 2       N = 3
>       E(L=0) =        -0.1789 Ry    0.1213 Ry    0.1854 Ry
>       E(L=1) =         0.1263 Ry    0.1949 Ry    0.2715 Ry
> 
>       Cutoff (Ry) :   90.0
>                             N = 1       N = 2       N = 3
>       E(L=0) =        -0.1789 Ry    0.1213 Ry    0.1854 Ry
>       E(L=1) =         0.1263 Ry    0.1949 Ry    0.2715 Ry
> 
>       Cutoff (Ry) :  120.0
>                             N = 1       N = 2       N = 3
>       E(L=0) =        -0.1789 Ry    0.1213 Ry    0.1854 Ry
>       E(L=1) =         0.1263 Ry    0.1948 Ry    0.2715 Ry
> 
>       -------------- End of Bessel function test ------------------------
> 
> 
> Thank you in advance,
> 


-- 
----------------------------------------------------------------------
Prof Nicola Marzari, Chair of Theory and Simulation of Materials, EPFL
Director, National Centre for Competence in Research NCCR MARVEL, EPFL
http://theossrv1.epfl.ch/Main/Contact http://nccr-marvel.ch/en/project


More information about the users mailing list