[QE-users] [Pw_forum] input file for isolated atom

Ajmal Ghan ajmalghan1991 at gmail.com
Wed Nov 20 15:20:35 CET 2019


Thanks, Yves and Giuseppe for suggestions,


I tried both bulk and isolated atom calculations with tighter parameters.
But the cohesive energy obtained is still -5.27 eV ( when the experimental
value is -4.85 eV). I found the value reported in  PHYSICAL REVIEW B 87,
214102 (2013) PBE, PEBSol etc.. produced same value that i could calculate.


I am trying to build MD* EAM potential* using *GULP*.


*I would like to ask the community* that, is there any software/ programs
which can directly take files from quantum espresso to build potentials (
Just like VASP has).

As Yves suggested before, I am planning to build the potential using any
other observable if cohesive energy can't be produced accurately.

All suggestions are welcome.


Thanks & Regards,
*------------------------------------------------------------------------------------------------------*
Ajmalghan MUTHALI

Post doctorate researcher
Laboratoire ICB
UMR 6303 CNRS-Université de Bourgogne
9 Avenue Alain Savary, BP 47870
F-21078 DIJON Cedex, France
Tel: +33-(0)7.69.28.19.91
Email : ajmalghan.muthali at u-bourgogne.fr


On Tue, Nov 12, 2019 at 4:08 PM Yves Ferro <yves.ferro at univ-amu.fr> wrote:

> Yes but for *calculation* I can read *scf* instead of* vc-relax*.
>
> It should be:
> &control
>       calculation      = vc-relax
> …..
>
> &cell
>       cell_dofree = « volume » or « ibrav »
>
> Fixing *force_conv_thr*  is useless and you should have a warning in the
> output.
> It seems that you are only running a scf calculation, which is valid for a
> single atom, not for the bulk.
>
> The a and c parameter you will compute will be another way to compare to
> experimental values.
>
> Yves
>
>
>
> Le 12 nov. 2019 à 15:45, Ajmal Ghan <ajmalghan1991 at gmail.com> a écrit :
>
> Thank you for your email,
>
> I have performed convergence studies ( both on 1x1 and 2x2 unit cell) for
> k-point, wave-function cutoff, smearing.
>
> *Here is the input for Ti bulk*,
>
> &control
>    calculation      = 'scf'
>    restart_mode     = 'from_scratch'
>    pseudo_dir       = '/work/shared/s-tih/pseudo/'
>    prefix           = 'Ti2_deg4_40_8k'
>    wf_collect       = .true.
>    tstress          = .true.
>    tprnfor          = .true.
>    forc_conv_thr    = 1.0d-5
>    verbosity        = 'high'
>  /
> &system
>    ibrav            = 4
>    a = 2.950,b=2.950,c=4.81735,cosbc=0,cosac=0,cosab=-0.5
>    nat              = 2
>    ntyp             = 1
>    ecutwfc          = 40
>    ecutrho          = 320
>    occupations      = 'smearing',  smearing='mp', degauss=0.04D0
>  /
> &electrons
>    diagonalization  = 'cg'
>    mixing_beta      = 0.3d00
>    conv_thr         = 1.0d-7
>
> /
> ATOMIC_SPECIES
>   Ti  47.8670  Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>
>
> ATOMIC_POSITIONS (crystal)
>    Ti     0.666 0.333 0.7500
>    Ti     0.333 0.666 0.2500
>
> K_POINTS {automatic}
>   8  8  5  0  0  0
>
> *And the output*,
>
>
> ..................................................................................................................
>     bravais-lattice index     =            4
>      lattice parameter (alat)  =       5.5747  a.u.
>      unit-cell volume          =     245.0076 (a.u.)^3
>      number of atoms/cell      =            2
>      number of atomic types    =            1
>      number of electrons       =        24.00
>      number of Kohn-Sham states=           16
>      kinetic-energy cutoff     =      40.0000  Ry
>      charge density cutoff     =     320.0000  Ry
>      convergence threshold     =      1.0E-07
>      mixing beta               =       0.3000
>      number of iterations used =            8  plain     mixing
>      Exchange-correlation      = PBE ( 1  4  3  4 0 0)
>
>      celldm(1)=   5.574692  celldm(2)=   1.000000  celldm(3)=   1.633000
>      celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000
>
>      crystal axes: (cart. coord. in units of alat)
>                a(1) = (   1.000000   0.000000   0.000000 )
>                a(2) = (  -0.500000   0.866025   0.000000 )
>                a(3) = (   0.000000   0.000000   1.633000 )
>
>      reciprocal axes: (cart. coord. in units 2 pi/alat)
>                b(1) = (  1.000000  0.577350  0.000000 )
>                b(2) = (  0.000000  1.154701  0.000000 )
>                b(3) = (  0.000000  0.000000  0.612370 )
>
>
>      PseudoPot. # 1 for Ti read from file:
>      /work/shared/s-tih/pseudo/Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>      MD5 check sum: e281089c08e14b8efcf92e44a67ada65
>      Pseudo is Ultrasoft + core correction, Zval = 12.0
>      Generated using "atomic" code by A. Dal Corso v.6.2.2
>      Using radial grid of 1177 points,  6 beta functions with:
>                 l(1) =   0
>                 l(2) =   0
>                 l(3) =   1
>                 l(4) =   1
>                 l(5) =   2
>                 l(6) =   2
>      Q(r) pseudized with 0 coefficients
>
>
>      atomic species   valence    mass     pseudopotential
>         Ti            12.00    47.86700     Ti( 1.00)
>
>       8 Sym. Ops., with inversion, found ( 6 have fractional translation)
>
> ..................................................................................................................
>
>      the Fermi energy is    12.6981 ev
>
> !    total energy              =    -239.45976063 Ry
>      Harris-Foulkes estimate   =    -239.45976064 Ry
>      estimated scf accuracy    <          6.2E-09 Ry
>
>      The total energy is the sum of the following terms:
>
>      one-electron contribution =     -84.68427794 Ry
>      hartree contribution      =      49.69752058 Ry
>      xc contribution           =     -36.99691545 Ry
>      ewald contribution        =    -167.48081236 Ry
>      smearing contrib. (-TS)   =       0.00472453 Ry
>
>      convergence has been achieved in   7 iterations
>
>
> *cohesive Energy  = -239.45976063/2 - -119.34098597 = -0.388894345 Ry =
> -5.29 eV.   *(0.44 eV difference from experimental value).
>
> I am attaching the i/o files also with this, but most of the important
> details of the calculation are above.
>
> Thanks for any help.
>
>
> *------------------------------------------------------------------------------------------------------*
> Ajmalghan MUTHALI
>
> Post doctorate researcher
> Laboratoire ICB
> UMR 6303 CNRS-Université de Bourgogne
> 9 Avenue Alain Savary, BP 47870
> F-21078 DIJON Cedex, France
> Tel: +33-(0)7.69.28.19.91
> Email : ajmalghan.muthali at u-bourgogne.fr
>
>
> On Tue, Nov 12, 2019 at 12:25 PM Giuseppe Mattioli <
> giuseppe.mattioli at ism.cnr.it> wrote:
>
>>
>> Dear Ajmalghan
>> Sorry for asking a possibly stupid question, but you are focusing on
>> the calculation of isolated Ti, and the error might be contained in
>> the calculation of hcp metal Ti... Are you sure that everything is
>> correct in that case?
>> HTH
>> Giuseppe
>>
>> Quoting Ajmal Ghan <ajmalghan1991 at gmail.com>:
>>
>> > Thanks all for the reply,
>> >
>> > With all the inputs provided here and mail archives, I made some
>> > significant changes ( fixed magnetization, increased the size of the
>> cell,
>> > Gamma point calculation, Mixing beta etc...).
>> >
>> > *Input of isolated Ti atom*:
>> >
>> > &control
>> >    calculation      = 'scf'
>> >    restart_mode     = 'from_scratch'
>> >    pseudo_dir       = '/work/shared/s-tih/pseudo/'
>> >    prefix           = 'Tifree_deg1_40_gk_1'
>> >    wf_collect       = .true.
>> >    forc_conv_thr    = 1.0d-5
>> >    verbosity        = 'high'
>> >  /
>> > &system
>> >    ibrav            = 1
>> >    celldm(1)        = 30
>> >    nat              = 1
>> >    ntyp             = 1
>> >    ecutwfc          = 40
>> >    ecutrho          = 320
>> >    nspin            = 2
>> >    tot_magnetization = 2
>> >    nosym            = .true
>> >    nbnd             = 100
>> >    occupations      = 'fixed'
>> >  /
>> > &electrons
>> >    diagonalization  = 'cg'
>> >    mixing_beta      = 0.3d00
>> >    conv_thr         = 1.0d-7
>> > /
>> > ATOMIC_SPECIES
>> >   Ti  47.8670  Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>> >
>> >
>> > ATOMIC_POSITIONS (crystal)
>> >    Ti     0.5 0.5 0.5
>> >
>> > K_POINTS GAMMA
>> >
>> >
>> > And for bulk calculations, i used same forc_conv_thr, ecutwfc,
>> &electrons
>> > parameters. *But I am still getting 5.23 eV as cohesive energy for Ti*.
>> is
>> > it possible to get the experimental ( 4.85 eV) using DFT calculations as
>> > reported in some of the journals?
>> >
>> > The output of isolated Ti atom calculation looks like,
>> >
>> >     bravais-lattice index     =            1
>> >      lattice parameter (alat)  =      30.0000  a.u.
>> >      unit-cell volume          =   27000.0000 (a.u.)^3
>> >      number of atoms/cell      =            1
>> >      number of atomic types    =            1
>> >      number of electrons       =        12.00 (up:   7.00, down:   5.00)
>> >      number of Kohn-Sham states=          100
>> >      kinetic-energy cutoff     =      40.0000  Ry
>> >      charge density cutoff     =     320.0000  Ry
>> >      convergence threshold     =      1.0E-07
>> >      mixing beta               =       0.3000
>> >      number of iterations used =            8  plain     mixing
>> >      Exchange-correlation      = PBE ( 1  4  3  4 0 0)
>> >
>> >      celldm(1)=  30.000000  celldm(2)=   0.000000  celldm(3)=   0.000000
>> >      celldm(4)=   0.000000  celldm(5)=   0.000000  celldm(6)=   0.000000
>> >
>> >
>> etc..............................................................................................................
>> >
>> >      Starting magnetic structure
>> >      atomic species   magnetization
>> >         Ti           0.000
>> >
>> >      No symmetry found
>> >
>> etc..............................................................................................................
>> >
>> ..................................................................................................................
>> >
>> >      iteration # 23     ecut=    40.00 Ry     beta= 0.30
>> >      CG style diagonalization
>> >      ethr =  1.01E-09,  avg # of iterations =  3.1
>> >
>> >      negative rho (up, down):  1.660E-02 1.306E-01
>> >
>> >      Magnetic moment per site:
>> >      atom:    1    charge:   11.9999    magn:    2.0000    constr:
>> 0.0000
>> >
>> >      total cpu time spent up to now is      108.5 secs
>> >
>> >      End of self-consistent calculation
>> >
>> >  ------ SPIN UP ------------
>> >
>> >           k = 0.0000 0.0000 0.0000 ( 57657 PWs)   bands (ev):
>> >
>> >    -62.1874 -38.4854 -38.4348 -38.4332  -4.4517  -4.4503  -4.4048
>> -3.5611
>> >     -3.5610  -3.5153  -1.4572  -1.4565  -1.1485  -0.4725   0.0828
>>  0.0992
>> >      0.1709   0.1890   0.1914   0.2168   0.5306   0.5437   0.6058
>>  0.6689
>> >      0.6794   0.6917   0.7097   0.7127   0.8758   0.8811   0.9122
>>  0.9174
>> >      1.1513   1.1544   1.1806   1.2368   1.4025   1.4198   1.4417
>>  1.4878
>> >      1.5485   1.5709   1.9392   1.9444   1.9629   2.0040   2.0535
>>  2.0683
>> >      2.1492   2.1983   2.2084   2.3100   2.3235   2.3454   2.3845
>>  2.4064
>> >      2.4189   2.4639   2.4693   2.4865   2.4880   2.5054   2.5055
>>  2.5179
>> >      2.5188   2.5215   2.7061   2.7211   2.7420   2.7869   2.7963
>>  2.8090
>> >      2.8145   2.8304   2.9938   3.0003   3.0113   3.0175   3.0230
>>  3.0259
>> >      3.0280   3.0332   3.0529   3.0580   3.0645   3.0690   3.0757
>>  3.0785
>> >      3.0808   3.0898   3.5616   3.5684   3.6347   3.8452   3.9717
>>  3.9774
>> >      4.0381   4.0472   4.0540   4.0617
>> >
>> >      occupation numbers
>> >      1.0000   1.0000   1.0000   1.0000   1.0000   1.0000   1.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000
>> >
>> >  ------ SPIN DOWN ----------
>> >           k = 0.0000 0.0000 0.0000 ( 57657 PWs)   bands (ev):
>> >
>> >    -60.5692 -37.0219 -36.7521 -36.7481  -3.9282  -2.9464  -2.8480
>> -2.8461
>> >     -2.0737  -2.0734  -1.3881  -0.9733  -0.9724  -0.4455   0.0983
>>  0.1054
>> >      0.2139   0.2301   0.2409   0.2476   0.5776   0.5939   0.6083
>>  0.6823
>> >      0.6922   0.7172   0.7202   0.7223   0.9007   0.9617   0.9637
>>  0.9653
>> >      1.1886   1.2019   1.2109   1.2572   1.4214   1.4579   1.4604
>>  1.5175
>> >      1.5802   1.6023   1.9618   1.9874   1.9882   2.0402   2.1348
>>  2.1844
>> >      2.2059   2.2275   2.2450   2.3219   2.3301   2.3507   2.4059
>>  2.4124
>> >      2.4170   2.4823   2.4877   2.4881   2.5037   2.5077   2.5266
>>  2.5297
>> >      2.5305   2.5376   2.7444   2.7669   2.7706   2.8302   2.8379
>>  2.8443
>> >      2.8558   2.8670   3.0199   3.0266   3.0335   3.0380   3.0397
>>  3.0427
>> >      3.0462   3.0493   3.0781   3.0795   3.0805   3.0813   3.0847
>>  3.0869
>> >      3.1009   3.1038   3.6043   3.6940   3.6955   3.9171   4.0363
>>  4.0648
>> >      4.0726   4.0791   4.0896   4.0980
>> >
>> >      occupation numbers
>> >      1.0000   1.0000   1.0000   1.0000   1.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
>>  0.0000
>> >      0.0000   0.0000   0.0000   0.0000
>> >
>> >      highest occupied, lowest unoccupied level (ev):    -3.9282
>>  -3.5611
>> >
>> > !    total energy              =    -119.34098597 Ry
>> >      Harris-Foulkes estimate   =    -119.34098367 Ry
>> >      estimated scf accuracy    <       0.00000010 Ry
>> >
>> >      The total energy is the sum of the following terms:
>> >
>> >      one-electron contribution =    -167.22501663 Ry
>> >      hartree contribution      =      79.78699354 Ry
>> >      xc contribution           =     -18.28393498 Ry
>> >      ewald contribution        =     -13.61902790 Ry
>> >
>> >      total magnetization       =     2.00 Bohr mag/cell
>> >      absolute magnetization    =     2.44 Bohr mag/cell
>> >
>> >      convergence has been achieved in  23 iterations
>> >
>> >
>> > Waiting for reply. Thanks for all the inputs.
>> >
>> > Thanks & Regards,
>> >
>> *------------------------------------------------------------------------------------------------------*
>> > Ajmalghan MUTHALI
>> >
>> > Post doctorate researcher
>> > Laboratoire ICB
>> > UMR 6303 CNRS-Université de Bourgogne
>> > 9 Avenue Alain Savary, BP 47870
>> > F-21078 DIJON Cedex, France
>> > Tel: +33-(0)7.69.28.19.91
>> > Email : ajmalghan.muthali at u-bourgogne.fr
>> >
>> >
>> > On Sun, Nov 10, 2019 at 3:52 PM Ari P Seitsonen <Ari.P.Seitsonen at iki.fi
>> >
>> > wrote:
>> >
>> >>
>> >> Dear Ajmalghan,
>> >>
>> >>    Some quick comments:
>> >>
>> >>   - Why do you use k point in the case of an isolated atom?? Well, that
>> >> should not matter, just that you are wasting computing time
>> >>
>> >>   - I guess that the spherical symmetry of the atom is broken; thus I
>> >> would
>> >> use a non-cube cell, preferably the orthorhombic cell, with slightly
>> >> different lengths of the basis vectors of the unit cell. Then to break
>> the
>> >> symmetry, you can use some randomisation of the initial wave functions.
>> >> And still, the convergence is probably going to be very difficult...
>> You
>> >> can indeed try to fix the magnetisation; and I would reduce the
>> >> 'mixing_beta' to something (very) small - in principle already at the
>> >> first step the electron density should be close to the self-consistent
>> >> one, bar the loss of sphericality and the randomised wave function
>> >>
>> >>   - Please remember that the scale of 'starting_magnetisation' is from
>> -1
>> >> to +1, meaning that all the electrons are spin-polarised either up or
>> >> down, whereas in your case you only want to polarise the two valence
>> >> electrons out of the valence of the pseudo potential that seems to be
>> 12
>> >> electrons
>> >>
>> >>    Well, Good Luck. :)
>> >>
>> >>      Greetings from Paris,
>> >>
>> >>         apsi
>> >>
>> >>
>> >>
>> -=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-
>> >>    Ari Paavo Seitsonen / Ari.P.Seitsonen at iki.fi /
>> http://www.iki.fi/~apsi/
>> >>      Ecole Normale Supérieure (ENS), Département de Chimie, Paris
>> >>      Mobile (F) : +33 789 37 24 25    (CH) : +41 79 71 90 935
>> >>
>> >>
>> >> On Sat, 9 Nov 2019, Ajmal Ghan wrote:
>> >>
>> >> > Hello all,
>> >> >
>> >> > I have gone through all the archived discussion about cohesive energy
>> >> calculation.
>> >> >
>> >> > I am trying to calculate the cohesive energy of Ti which is  4.85eV.
>> But
>> >> I am getting 5.23 eV which is closer. But I have found from a previous
>> >> discussion
>> >> > here (
>> >>
>> https://www.mail-archive.com/users@lists.quantum-espresso.org/msg11410.html
>> >> ) that, the final magnetization should be 2 Bohr mag/ cell at the end
>> >> > of calculation for Ti and smearing contribution of energy should be
>> >> 0.0Ry.
>> >> > But I am getting to get 3.83 Bohr mag/cell and a significant smearing
>> >> contribution = -0.03295688 Ry.
>> >> >
>> >> > Anyone help me to sort this. what should I change in the input?
>> >> >
>> >> >
>> >> > here is my input,
>> >> >
>> >> > &control
>> >> >    calculation      = 'scf'
>> >> >    restart_mode     = 'from_scratch'
>> >> >    pseudo_dir       = '/work/shared/s-tih/pseudo/'
>> >> >    prefix           = 'Tifree_deg1_50_8k_1'
>> >> >    wf_collect       = .true.
>> >> >    tstress          = .true.
>> >> >    tprnfor          = .true.
>> >> >    forc_conv_thr    = 1.0d-6
>> >> >    verbosity        = 'high'
>> >> >  /
>> >> > &system
>> >> >    ibrav            = 1
>> >> >    celldm(1)     = 20
>> >> >    nat              = 1
>> >> >    ntyp            = 1
>> >> >    ecutwfc       = 50      //( I have performed convergence study.
>> But
>> >> since degauss is reduced to 0.01, i increased ecut)
>> >> >    ecutrho       = 400
>> >> >    nspin          = 2
>> >> >    starting_magnetization(1) = 1        // I think, the final
>> >> magnetisation should be 2 bohr mag/ cell at the end of calculation.
>> >> >    nosym            = .true                    /// I hope this is
>> enough
>> >> to break the symmetry
>> >> >    nbnd             = 100
>> >> >    occupations      = 'smearing',  smearing='mp', degauss=0.01D0
>> >> >  /
>> >> > &electrons
>> >> >    diagonalization  = 'cg'
>> >> >    mixing_beta      = 0.7d00
>> >> >    conv_thr         = 1.0d-8     // I used even higher convergence
>> since
>> >> smearing is reduced.
>> >> > /
>> >> > ATOMIC_SPECIES
>> >> >   Ti  47.8670  Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>> >> >
>> >> >
>> >> > ATOMIC_POSITIONS (crystal)
>> >> >    Ti     0.5 0.5 0.5
>> >> >
>> >> > K_POINTS {automatic}
>> >> >   8  8  5  0  0  0
>> >> >
>> >> >
>> >> > I don't really know this is the correct way to post a reply. All
>> input
>> >> is welcome.
>> >> >
>> >> > Thanks & Regards,
>> >> >
>> >>
>> ------------------------------------------------------------------------------------------------------
>> >> > Ajmalghan MUTHALI
>> >> >
>> >> > Post doctorate researcher
>> >> > Laboratoire ICB
>> >> > UMR 6303 CNRS-Université de Bourgogne
>> >> > 9 Avenue Alain Savary, BP 47870
>> >> > F-21078 DIJON Cedex, France
>> >> > Tel: +33-(0)7.69.28.19.91
>> >> > Email : ajmalghan.muthali at u-bourgogne.fr
>> >> >
>> >> >_______________________________________________
>> >> Quantum ESPRESSO is supported by MaX (
>> www.max-centre.eu/quantum-espresso)
>> >> users mailing list users at lists.quantum-espresso.org
>> >> https://lists.quantum-espresso.org/mailman/listinfo/users
>>
>>
>>
>> GIUSEPPE MATTIOLI
>> CNR - ISTITUTO DI STRUTTURA DELLA MATERIA
>> Via Salaria Km 29,300 - C.P. 10
>> I-00015 - Monterotondo Scalo (RM)
>> Mob (*preferred*) +39 373 7305625
>> Tel + 39 06 90672342 - Fax +39 06 90672316
>> E-mail: <giuseppe.mattioli at ism.cnr.it>
>>
>> _______________________________________________
>> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
>> users mailing list users at lists.quantum-espresso.org
>> https://lists.quantum-espresso.org/mailman/listinfo/users
>
> <Tifree_deg1_50_gk_1.out><Tifree_deg1_50_gk_1.in
> <http://tifree_deg1_50_gk_1.in>><Ti2_deg4_40_8k_1.in
> <http://ti2_deg4_40_8k_1.in>><Ti2_deg4_40_8k_1.out>
> _______________________________________________
> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
> users mailing list users at lists.quantum-espresso.org
> https://lists.quantum-espresso.org/mailman/listinfo/users
>
>
> _______________________________________________
> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
> users mailing list users at lists.quantum-espresso.org
> https://lists.quantum-espresso.org/mailman/listinfo/users
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20191120/304bb47e/attachment.html>


More information about the users mailing list