[QE-users] [Pw_forum] input file for isolated atom
Ajmal Ghan
ajmalghan1991 at gmail.com
Wed Nov 20 15:20:35 CET 2019
Thanks, Yves and Giuseppe for suggestions,
I tried both bulk and isolated atom calculations with tighter parameters.
But the cohesive energy obtained is still -5.27 eV ( when the experimental
value is -4.85 eV). I found the value reported in PHYSICAL REVIEW B 87,
214102 (2013) PBE, PEBSol etc.. produced same value that i could calculate.
I am trying to build MD* EAM potential* using *GULP*.
*I would like to ask the community* that, is there any software/ programs
which can directly take files from quantum espresso to build potentials (
Just like VASP has).
As Yves suggested before, I am planning to build the potential using any
other observable if cohesive energy can't be produced accurately.
All suggestions are welcome.
Thanks & Regards,
*------------------------------------------------------------------------------------------------------*
Ajmalghan MUTHALI
Post doctorate researcher
Laboratoire ICB
UMR 6303 CNRS-Université de Bourgogne
9 Avenue Alain Savary, BP 47870
F-21078 DIJON Cedex, France
Tel: +33-(0)7.69.28.19.91
Email : ajmalghan.muthali at u-bourgogne.fr
On Tue, Nov 12, 2019 at 4:08 PM Yves Ferro <yves.ferro at univ-amu.fr> wrote:
> Yes but for *calculation* I can read *scf* instead of* vc-relax*.
>
> It should be:
> &control
> calculation = vc-relax
> …..
>
> &cell
> cell_dofree = « volume » or « ibrav »
>
> Fixing *force_conv_thr* is useless and you should have a warning in the
> output.
> It seems that you are only running a scf calculation, which is valid for a
> single atom, not for the bulk.
>
> The a and c parameter you will compute will be another way to compare to
> experimental values.
>
> Yves
>
>
>
> Le 12 nov. 2019 à 15:45, Ajmal Ghan <ajmalghan1991 at gmail.com> a écrit :
>
> Thank you for your email,
>
> I have performed convergence studies ( both on 1x1 and 2x2 unit cell) for
> k-point, wave-function cutoff, smearing.
>
> *Here is the input for Ti bulk*,
>
> &control
> calculation = 'scf'
> restart_mode = 'from_scratch'
> pseudo_dir = '/work/shared/s-tih/pseudo/'
> prefix = 'Ti2_deg4_40_8k'
> wf_collect = .true.
> tstress = .true.
> tprnfor = .true.
> forc_conv_thr = 1.0d-5
> verbosity = 'high'
> /
> &system
> ibrav = 4
> a = 2.950,b=2.950,c=4.81735,cosbc=0,cosac=0,cosab=-0.5
> nat = 2
> ntyp = 1
> ecutwfc = 40
> ecutrho = 320
> occupations = 'smearing', smearing='mp', degauss=0.04D0
> /
> &electrons
> diagonalization = 'cg'
> mixing_beta = 0.3d00
> conv_thr = 1.0d-7
>
> /
> ATOMIC_SPECIES
> Ti 47.8670 Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>
>
> ATOMIC_POSITIONS (crystal)
> Ti 0.666 0.333 0.7500
> Ti 0.333 0.666 0.2500
>
> K_POINTS {automatic}
> 8 8 5 0 0 0
>
> *And the output*,
>
>
> ..................................................................................................................
> bravais-lattice index = 4
> lattice parameter (alat) = 5.5747 a.u.
> unit-cell volume = 245.0076 (a.u.)^3
> number of atoms/cell = 2
> number of atomic types = 1
> number of electrons = 24.00
> number of Kohn-Sham states= 16
> kinetic-energy cutoff = 40.0000 Ry
> charge density cutoff = 320.0000 Ry
> convergence threshold = 1.0E-07
> mixing beta = 0.3000
> number of iterations used = 8 plain mixing
> Exchange-correlation = PBE ( 1 4 3 4 0 0)
>
> celldm(1)= 5.574692 celldm(2)= 1.000000 celldm(3)= 1.633000
> celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
>
> crystal axes: (cart. coord. in units of alat)
> a(1) = ( 1.000000 0.000000 0.000000 )
> a(2) = ( -0.500000 0.866025 0.000000 )
> a(3) = ( 0.000000 0.000000 1.633000 )
>
> reciprocal axes: (cart. coord. in units 2 pi/alat)
> b(1) = ( 1.000000 0.577350 0.000000 )
> b(2) = ( 0.000000 1.154701 0.000000 )
> b(3) = ( 0.000000 0.000000 0.612370 )
>
>
> PseudoPot. # 1 for Ti read from file:
> /work/shared/s-tih/pseudo/Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
> MD5 check sum: e281089c08e14b8efcf92e44a67ada65
> Pseudo is Ultrasoft + core correction, Zval = 12.0
> Generated using "atomic" code by A. Dal Corso v.6.2.2
> Using radial grid of 1177 points, 6 beta functions with:
> l(1) = 0
> l(2) = 0
> l(3) = 1
> l(4) = 1
> l(5) = 2
> l(6) = 2
> Q(r) pseudized with 0 coefficients
>
>
> atomic species valence mass pseudopotential
> Ti 12.00 47.86700 Ti( 1.00)
>
> 8 Sym. Ops., with inversion, found ( 6 have fractional translation)
>
> ..................................................................................................................
>
> the Fermi energy is 12.6981 ev
>
> ! total energy = -239.45976063 Ry
> Harris-Foulkes estimate = -239.45976064 Ry
> estimated scf accuracy < 6.2E-09 Ry
>
> The total energy is the sum of the following terms:
>
> one-electron contribution = -84.68427794 Ry
> hartree contribution = 49.69752058 Ry
> xc contribution = -36.99691545 Ry
> ewald contribution = -167.48081236 Ry
> smearing contrib. (-TS) = 0.00472453 Ry
>
> convergence has been achieved in 7 iterations
>
>
> *cohesive Energy = -239.45976063/2 - -119.34098597 = -0.388894345 Ry =
> -5.29 eV. *(0.44 eV difference from experimental value).
>
> I am attaching the i/o files also with this, but most of the important
> details of the calculation are above.
>
> Thanks for any help.
>
>
> *------------------------------------------------------------------------------------------------------*
> Ajmalghan MUTHALI
>
> Post doctorate researcher
> Laboratoire ICB
> UMR 6303 CNRS-Université de Bourgogne
> 9 Avenue Alain Savary, BP 47870
> F-21078 DIJON Cedex, France
> Tel: +33-(0)7.69.28.19.91
> Email : ajmalghan.muthali at u-bourgogne.fr
>
>
> On Tue, Nov 12, 2019 at 12:25 PM Giuseppe Mattioli <
> giuseppe.mattioli at ism.cnr.it> wrote:
>
>>
>> Dear Ajmalghan
>> Sorry for asking a possibly stupid question, but you are focusing on
>> the calculation of isolated Ti, and the error might be contained in
>> the calculation of hcp metal Ti... Are you sure that everything is
>> correct in that case?
>> HTH
>> Giuseppe
>>
>> Quoting Ajmal Ghan <ajmalghan1991 at gmail.com>:
>>
>> > Thanks all for the reply,
>> >
>> > With all the inputs provided here and mail archives, I made some
>> > significant changes ( fixed magnetization, increased the size of the
>> cell,
>> > Gamma point calculation, Mixing beta etc...).
>> >
>> > *Input of isolated Ti atom*:
>> >
>> > &control
>> > calculation = 'scf'
>> > restart_mode = 'from_scratch'
>> > pseudo_dir = '/work/shared/s-tih/pseudo/'
>> > prefix = 'Tifree_deg1_40_gk_1'
>> > wf_collect = .true.
>> > forc_conv_thr = 1.0d-5
>> > verbosity = 'high'
>> > /
>> > &system
>> > ibrav = 1
>> > celldm(1) = 30
>> > nat = 1
>> > ntyp = 1
>> > ecutwfc = 40
>> > ecutrho = 320
>> > nspin = 2
>> > tot_magnetization = 2
>> > nosym = .true
>> > nbnd = 100
>> > occupations = 'fixed'
>> > /
>> > &electrons
>> > diagonalization = 'cg'
>> > mixing_beta = 0.3d00
>> > conv_thr = 1.0d-7
>> > /
>> > ATOMIC_SPECIES
>> > Ti 47.8670 Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>> >
>> >
>> > ATOMIC_POSITIONS (crystal)
>> > Ti 0.5 0.5 0.5
>> >
>> > K_POINTS GAMMA
>> >
>> >
>> > And for bulk calculations, i used same forc_conv_thr, ecutwfc,
>> &electrons
>> > parameters. *But I am still getting 5.23 eV as cohesive energy for Ti*.
>> is
>> > it possible to get the experimental ( 4.85 eV) using DFT calculations as
>> > reported in some of the journals?
>> >
>> > The output of isolated Ti atom calculation looks like,
>> >
>> > bravais-lattice index = 1
>> > lattice parameter (alat) = 30.0000 a.u.
>> > unit-cell volume = 27000.0000 (a.u.)^3
>> > number of atoms/cell = 1
>> > number of atomic types = 1
>> > number of electrons = 12.00 (up: 7.00, down: 5.00)
>> > number of Kohn-Sham states= 100
>> > kinetic-energy cutoff = 40.0000 Ry
>> > charge density cutoff = 320.0000 Ry
>> > convergence threshold = 1.0E-07
>> > mixing beta = 0.3000
>> > number of iterations used = 8 plain mixing
>> > Exchange-correlation = PBE ( 1 4 3 4 0 0)
>> >
>> > celldm(1)= 30.000000 celldm(2)= 0.000000 celldm(3)= 0.000000
>> > celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
>> >
>> >
>> etc..............................................................................................................
>> >
>> > Starting magnetic structure
>> > atomic species magnetization
>> > Ti 0.000
>> >
>> > No symmetry found
>> >
>> etc..............................................................................................................
>> >
>> ..................................................................................................................
>> >
>> > iteration # 23 ecut= 40.00 Ry beta= 0.30
>> > CG style diagonalization
>> > ethr = 1.01E-09, avg # of iterations = 3.1
>> >
>> > negative rho (up, down): 1.660E-02 1.306E-01
>> >
>> > Magnetic moment per site:
>> > atom: 1 charge: 11.9999 magn: 2.0000 constr:
>> 0.0000
>> >
>> > total cpu time spent up to now is 108.5 secs
>> >
>> > End of self-consistent calculation
>> >
>> > ------ SPIN UP ------------
>> >
>> > k = 0.0000 0.0000 0.0000 ( 57657 PWs) bands (ev):
>> >
>> > -62.1874 -38.4854 -38.4348 -38.4332 -4.4517 -4.4503 -4.4048
>> -3.5611
>> > -3.5610 -3.5153 -1.4572 -1.4565 -1.1485 -0.4725 0.0828
>> 0.0992
>> > 0.1709 0.1890 0.1914 0.2168 0.5306 0.5437 0.6058
>> 0.6689
>> > 0.6794 0.6917 0.7097 0.7127 0.8758 0.8811 0.9122
>> 0.9174
>> > 1.1513 1.1544 1.1806 1.2368 1.4025 1.4198 1.4417
>> 1.4878
>> > 1.5485 1.5709 1.9392 1.9444 1.9629 2.0040 2.0535
>> 2.0683
>> > 2.1492 2.1983 2.2084 2.3100 2.3235 2.3454 2.3845
>> 2.4064
>> > 2.4189 2.4639 2.4693 2.4865 2.4880 2.5054 2.5055
>> 2.5179
>> > 2.5188 2.5215 2.7061 2.7211 2.7420 2.7869 2.7963
>> 2.8090
>> > 2.8145 2.8304 2.9938 3.0003 3.0113 3.0175 3.0230
>> 3.0259
>> > 3.0280 3.0332 3.0529 3.0580 3.0645 3.0690 3.0757
>> 3.0785
>> > 3.0808 3.0898 3.5616 3.5684 3.6347 3.8452 3.9717
>> 3.9774
>> > 4.0381 4.0472 4.0540 4.0617
>> >
>> > occupation numbers
>> > 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000
>> >
>> > ------ SPIN DOWN ----------
>> > k = 0.0000 0.0000 0.0000 ( 57657 PWs) bands (ev):
>> >
>> > -60.5692 -37.0219 -36.7521 -36.7481 -3.9282 -2.9464 -2.8480
>> -2.8461
>> > -2.0737 -2.0734 -1.3881 -0.9733 -0.9724 -0.4455 0.0983
>> 0.1054
>> > 0.2139 0.2301 0.2409 0.2476 0.5776 0.5939 0.6083
>> 0.6823
>> > 0.6922 0.7172 0.7202 0.7223 0.9007 0.9617 0.9637
>> 0.9653
>> > 1.1886 1.2019 1.2109 1.2572 1.4214 1.4579 1.4604
>> 1.5175
>> > 1.5802 1.6023 1.9618 1.9874 1.9882 2.0402 2.1348
>> 2.1844
>> > 2.2059 2.2275 2.2450 2.3219 2.3301 2.3507 2.4059
>> 2.4124
>> > 2.4170 2.4823 2.4877 2.4881 2.5037 2.5077 2.5266
>> 2.5297
>> > 2.5305 2.5376 2.7444 2.7669 2.7706 2.8302 2.8379
>> 2.8443
>> > 2.8558 2.8670 3.0199 3.0266 3.0335 3.0380 3.0397
>> 3.0427
>> > 3.0462 3.0493 3.0781 3.0795 3.0805 3.0813 3.0847
>> 3.0869
>> > 3.1009 3.1038 3.6043 3.6940 3.6955 3.9171 4.0363
>> 4.0648
>> > 4.0726 4.0791 4.0896 4.0980
>> >
>> > occupation numbers
>> > 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
>> 0.0000
>> > 0.0000 0.0000 0.0000 0.0000
>> >
>> > highest occupied, lowest unoccupied level (ev): -3.9282
>> -3.5611
>> >
>> > ! total energy = -119.34098597 Ry
>> > Harris-Foulkes estimate = -119.34098367 Ry
>> > estimated scf accuracy < 0.00000010 Ry
>> >
>> > The total energy is the sum of the following terms:
>> >
>> > one-electron contribution = -167.22501663 Ry
>> > hartree contribution = 79.78699354 Ry
>> > xc contribution = -18.28393498 Ry
>> > ewald contribution = -13.61902790 Ry
>> >
>> > total magnetization = 2.00 Bohr mag/cell
>> > absolute magnetization = 2.44 Bohr mag/cell
>> >
>> > convergence has been achieved in 23 iterations
>> >
>> >
>> > Waiting for reply. Thanks for all the inputs.
>> >
>> > Thanks & Regards,
>> >
>> *------------------------------------------------------------------------------------------------------*
>> > Ajmalghan MUTHALI
>> >
>> > Post doctorate researcher
>> > Laboratoire ICB
>> > UMR 6303 CNRS-Université de Bourgogne
>> > 9 Avenue Alain Savary, BP 47870
>> > F-21078 DIJON Cedex, France
>> > Tel: +33-(0)7.69.28.19.91
>> > Email : ajmalghan.muthali at u-bourgogne.fr
>> >
>> >
>> > On Sun, Nov 10, 2019 at 3:52 PM Ari P Seitsonen <Ari.P.Seitsonen at iki.fi
>> >
>> > wrote:
>> >
>> >>
>> >> Dear Ajmalghan,
>> >>
>> >> Some quick comments:
>> >>
>> >> - Why do you use k point in the case of an isolated atom?? Well, that
>> >> should not matter, just that you are wasting computing time
>> >>
>> >> - I guess that the spherical symmetry of the atom is broken; thus I
>> >> would
>> >> use a non-cube cell, preferably the orthorhombic cell, with slightly
>> >> different lengths of the basis vectors of the unit cell. Then to break
>> the
>> >> symmetry, you can use some randomisation of the initial wave functions.
>> >> And still, the convergence is probably going to be very difficult...
>> You
>> >> can indeed try to fix the magnetisation; and I would reduce the
>> >> 'mixing_beta' to something (very) small - in principle already at the
>> >> first step the electron density should be close to the self-consistent
>> >> one, bar the loss of sphericality and the randomised wave function
>> >>
>> >> - Please remember that the scale of 'starting_magnetisation' is from
>> -1
>> >> to +1, meaning that all the electrons are spin-polarised either up or
>> >> down, whereas in your case you only want to polarise the two valence
>> >> electrons out of the valence of the pseudo potential that seems to be
>> 12
>> >> electrons
>> >>
>> >> Well, Good Luck. :)
>> >>
>> >> Greetings from Paris,
>> >>
>> >> apsi
>> >>
>> >>
>> >>
>> -=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-=*=-
>> >> Ari Paavo Seitsonen / Ari.P.Seitsonen at iki.fi /
>> http://www.iki.fi/~apsi/
>> >> Ecole Normale Supérieure (ENS), Département de Chimie, Paris
>> >> Mobile (F) : +33 789 37 24 25 (CH) : +41 79 71 90 935
>> >>
>> >>
>> >> On Sat, 9 Nov 2019, Ajmal Ghan wrote:
>> >>
>> >> > Hello all,
>> >> >
>> >> > I have gone through all the archived discussion about cohesive energy
>> >> calculation.
>> >> >
>> >> > I am trying to calculate the cohesive energy of Ti which is 4.85eV.
>> But
>> >> I am getting 5.23 eV which is closer. But I have found from a previous
>> >> discussion
>> >> > here (
>> >>
>> https://www.mail-archive.com/users@lists.quantum-espresso.org/msg11410.html
>> >> ) that, the final magnetization should be 2 Bohr mag/ cell at the end
>> >> > of calculation for Ti and smearing contribution of energy should be
>> >> 0.0Ry.
>> >> > But I am getting to get 3.83 Bohr mag/cell and a significant smearing
>> >> contribution = -0.03295688 Ry.
>> >> >
>> >> > Anyone help me to sort this. what should I change in the input?
>> >> >
>> >> >
>> >> > here is my input,
>> >> >
>> >> > &control
>> >> > calculation = 'scf'
>> >> > restart_mode = 'from_scratch'
>> >> > pseudo_dir = '/work/shared/s-tih/pseudo/'
>> >> > prefix = 'Tifree_deg1_50_8k_1'
>> >> > wf_collect = .true.
>> >> > tstress = .true.
>> >> > tprnfor = .true.
>> >> > forc_conv_thr = 1.0d-6
>> >> > verbosity = 'high'
>> >> > /
>> >> > &system
>> >> > ibrav = 1
>> >> > celldm(1) = 20
>> >> > nat = 1
>> >> > ntyp = 1
>> >> > ecutwfc = 50 //( I have performed convergence study.
>> But
>> >> since degauss is reduced to 0.01, i increased ecut)
>> >> > ecutrho = 400
>> >> > nspin = 2
>> >> > starting_magnetization(1) = 1 // I think, the final
>> >> magnetisation should be 2 bohr mag/ cell at the end of calculation.
>> >> > nosym = .true /// I hope this is
>> enough
>> >> to break the symmetry
>> >> > nbnd = 100
>> >> > occupations = 'smearing', smearing='mp', degauss=0.01D0
>> >> > /
>> >> > &electrons
>> >> > diagonalization = 'cg'
>> >> > mixing_beta = 0.7d00
>> >> > conv_thr = 1.0d-8 // I used even higher convergence
>> since
>> >> smearing is reduced.
>> >> > /
>> >> > ATOMIC_SPECIES
>> >> > Ti 47.8670 Ti.pbe-spn-rrkjus_psl.1.0.0.UPF
>> >> >
>> >> >
>> >> > ATOMIC_POSITIONS (crystal)
>> >> > Ti 0.5 0.5 0.5
>> >> >
>> >> > K_POINTS {automatic}
>> >> > 8 8 5 0 0 0
>> >> >
>> >> >
>> >> > I don't really know this is the correct way to post a reply. All
>> input
>> >> is welcome.
>> >> >
>> >> > Thanks & Regards,
>> >> >
>> >>
>> ------------------------------------------------------------------------------------------------------
>> >> > Ajmalghan MUTHALI
>> >> >
>> >> > Post doctorate researcher
>> >> > Laboratoire ICB
>> >> > UMR 6303 CNRS-Université de Bourgogne
>> >> > 9 Avenue Alain Savary, BP 47870
>> >> > F-21078 DIJON Cedex, France
>> >> > Tel: +33-(0)7.69.28.19.91
>> >> > Email : ajmalghan.muthali at u-bourgogne.fr
>> >> >
>> >> >_______________________________________________
>> >> Quantum ESPRESSO is supported by MaX (
>> www.max-centre.eu/quantum-espresso)
>> >> users mailing list users at lists.quantum-espresso.org
>> >> https://lists.quantum-espresso.org/mailman/listinfo/users
>>
>>
>>
>> GIUSEPPE MATTIOLI
>> CNR - ISTITUTO DI STRUTTURA DELLA MATERIA
>> Via Salaria Km 29,300 - C.P. 10
>> I-00015 - Monterotondo Scalo (RM)
>> Mob (*preferred*) +39 373 7305625
>> Tel + 39 06 90672342 - Fax +39 06 90672316
>> E-mail: <giuseppe.mattioli at ism.cnr.it>
>>
>> _______________________________________________
>> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
>> users mailing list users at lists.quantum-espresso.org
>> https://lists.quantum-espresso.org/mailman/listinfo/users
>
> <Tifree_deg1_50_gk_1.out><Tifree_deg1_50_gk_1.in
> <http://tifree_deg1_50_gk_1.in>><Ti2_deg4_40_8k_1.in
> <http://ti2_deg4_40_8k_1.in>><Ti2_deg4_40_8k_1.out>
> _______________________________________________
> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
> users mailing list users at lists.quantum-espresso.org
> https://lists.quantum-espresso.org/mailman/listinfo/users
>
>
> _______________________________________________
> Quantum ESPRESSO is supported by MaX (www.max-centre.eu/quantum-espresso)
> users mailing list users at lists.quantum-espresso.org
> https://lists.quantum-espresso.org/mailman/listinfo/users
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20191120/304bb47e/attachment.html>
More information about the users
mailing list