[QE-users] Error in routine cegterg (5014): cannot allocate psi
Ismail Ibrahim
idowuaraba6 at gmail.com
Tue May 21 23:25:43 CEST 2019
Dear QE community,
I am running a 2x2x2 supercell of Cu2O but show this after some run
"Error in routine cegterg (5014): cannot allocate psi" after.
Can anybody put me through on what to do? My input and output files are as
below
#************************************************************************************
#* Generated by cif2cell 1.2.10 2019-05-21 19:56
*
#* T. Bjorkman, Comp. Phys. Commun. 182, 1183-1186 (2011). Please cite
generously. *
#*
*
#* Data obtained from COD. Reference number : 1000063
*
#* Cu2 O (Copper(I) oxide)
*
#* Neuburger, M C, Zeitschrift fuer Physik 67, 845-850 (1930)
*
#************************************************************************************
&CONTROL
calculation='scf'
outdir='.',
prefix='basic'
pseudo_dir='.'
verbosity='high'
tprnfor=.true.,
tstress=.true.,
/
&SYSTEM
ibrav = 0
A = 4.25200
nat = 47
ntyp = 2
ecutwfc=90,
ecutrho=450,
input_dft='pbe',
degauss=0.005d0,
occupations='smearing'
smearing='mv',
/
&ELECTRONS
conv_thr=1d-08,
mixing_beta=0.7d0,
/
CELL_PARAMETERS {alat}
2.000000000000000 0.000000000000000 0.000000000000000
0.000000000000000 2.000000000000000 0.000000000000000
0.000000000000000 0.000000000000000 2.000000000000000
ATOMIC_SPECIES
O 15.99900 O.pbe-n-kjpaw_psl.0.1.UPF
Cu 63.54600 Cu.pbe-dn-kjpaw_psl.0.2.UPF
ATOMIC_POSITIONS {crystal}
Cu 0.125000000000000 0.125000000000000 0.125000000000000
Cu 0.375000000000000 0.375000000000000 0.125000000000000
Cu 0.375000000000000 0.125000000000000 0.375000000000000
Cu 0.125000000000000 0.375000000000000 0.375000000000000
Cu 0.625000000000000 0.625000000000000 0.125000000000000
Cu 0.625000000000000 0.125000000000000 0.125000000000000
Cu 0.125000000000000 0.625000000000000 0.625000000000000
Cu 0.125000000000000 0.125000000000000 0.625000000000000
Cu 0.625000000000000 0.625000000000000 0.625000000000000
Cu 0.625000000000000 0.125000000000000 0.625000000000000
Cu 0.125000000000000 0.625000000000000 0.125000000000000
Cu 0.875000000000000 0.875000000000000 0.125000000000000
Cu 0.875000000000000 0.375000000000000 0.125000000000000
Cu 0.375000000000000 0.875000000000000 0.625000000000000
Cu 0.375000000000000 0.375000000000000 0.625000000000000
Cu 0.875000000000000 0.875000000000000 0.625000000000000
Cu 0.875000000000000 0.375000000000000 0.625000000000000
Cu 0.375000000000000 0.875000000000000 0.125000000000000
Cu 0.875000000000000 0.625000000000000 0.375000000000000
Cu 0.875000000000000 0.125000000000000 0.375000000000000
Cu 0.375000000000000 0.625000000000000 0.875000000000000
Cu 0.375000000000000 0.125000000000000 0.875000000000000
Cu 0.875000000000000 0.625000000000000 0.875000000000000
Cu 0.875000000000000 0.125000000000000 0.875000000000000
Cu 0.375000000000000 0.625000000000000 0.375000000000000
Cu 0.625000000000000 0.875000000000000 0.375000000000000
Cu 0.625000000000000 0.375000000000000 0.375000000000000
Cu 0.125000000000000 0.875000000000000 0.875000000000000
Cu 0.125000000000000 0.375000000000000 0.875000000000000
Cu 0.625000000000000 0.875000000000000 0.875000000000000
Cu 0.625000000000000 0.375000000000000 0.875000000000000
Cu 0.125000000000000 0.875000000000000 0.375000000000000
O 0.000000000000000 0.000000000000000 0.000000000000000
O 0.250000000000000 0.250000000000000 0.250000000000000
O 0.500000000000000 0.500000000000000 0.000000000000000
O 0.500000000000000 0.000000000000000 0.000000000000000
O 0.000000000000000 0.500000000000000 0.500000000000000
O 0.000000000000000 0.000000000000000 0.500000000000000
O 0.500000000000000 0.000000000000000 0.500000000000000
O 0.000000000000000 0.500000000000000 0.000000000000000
O 0.750000000000000 0.750000000000000 0.250000000000000
O 0.750000000000000 0.250000000000000 0.250000000000000
O 0.250000000000000 0.750000000000000 0.750000000000000
O 0.250000000000000 0.250000000000000 0.750000000000000
O 0.750000000000000 0.750000000000000 0.750000000000000
O 0.750000000000000 0.250000000000000 0.750000000000000
O 0.250000000000000 0.750000000000000 0.250000000000000
K_POINTS {automatic}
3 3 3 0 0 0
out put
Program PWSCF v.5.1 starts on 21May2019 at 21:38:59
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details
at
http://www.quantum-espresso.org/quote
Parallel version (MPI), running on 1 processors
Reading input from modify_cuprous-conventional-222reg.in
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBE ( 1 4 3 4 0)
Any further DFT definition will be discarded
Please, verify this is what you really want
file O.pbe-n-kjpaw_psl.0.1.UPF: wavefunction(s) 2P
renormalized
file Cu.pbe-dn-kjpaw_psl.0.2.UPF: wavefunction(s) 4S 3D
renormalized
Subspace diagonalization in iterative solution of the eigenvalue
problem:
a serial algorithm will be used
G-vector sticks info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Sum 9265 7409 1941 668829 478785 64229
bravais-lattice index = 0
lattice parameter (alat) = 8.0351 a.u.
unit-cell volume = 4150.1745 (a.u.)^3
number of atoms/cell = 47
number of atomic types = 2
number of electrons = 442.00
number of Kohn-Sham states= 265
kinetic-energy cutoff = 90.0000 Ry
charge density cutoff = 450.0000 Ry
convergence threshold = 1.0E-08
mixing beta = 0.7000
number of iterations used = 8 plain mixing
Exchange-correlation = PBE ( 1 4 3 4 0)
celldm(1)= 8.035116 celldm(2)= 0.000000 celldm(3)= 0.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 2.000000 0.000000 0.000000 )
a(2) = ( 0.000000 2.000000 0.000000 )
a(3) = ( 0.000000 0.000000 2.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 0.500000 0.000000 0.000000 )
b(2) = ( 0.000000 0.500000 0.000000 )
b(3) = ( 0.000000 0.000000 0.500000 )
PseudoPot. # 1 for O read from file:
./O.pbe-n-kjpaw_psl.0.1.UPF
MD5 check sum: 833c495a5d0f9b75bf046115549bffff
Pseudo is Projector augmented-wave + core cor, Zval = 6.0
Generated using "atomic" code by A. Dal Corso v.6.3
Shape of augmentation charge: BESSEL
Using radial grid of 1095 points, 4 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
Q(r) pseudized with 0 coefficients
PseudoPot. # 2 for Cu read from file:
./Cu.pbe-dn-kjpaw_psl.0.2.UPF
MD5 check sum: 315c06c7b579c7c336aac2006b8584c5
Pseudo is Projector augmented-wave + core cor, Zval = 11.0
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn rev. 9415
Shape of augmentation charge: BESSEL
Using radial grid of 1199 points, 6 beta functions with:
l(1) = 0
l(2) = 0
l(3) = 1
l(4) = 1
l(5) = 2
l(6) = 2
Q(r) pseudized with 0 coefficients
atomic species valence mass pseudopotential
O 6.00 15.99900 O( 1.00)
Cu 11.00 63.54600 Cu( 1.00)
24 Sym. Ops. (no inversion) found
s frac. trans.
isym = 1 identity
cryst. s( 1) = ( 1 0 0 )
( 0 1 0 )
( 0 0 1 )
cart. s( 1) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 2 180 deg rotation - cart. axis [0,0,1]
cryst. s( 2) = ( -1 0 0 )
( 0 -1 0 )
( 0 0 1 )
cart. s( 2) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 3 180 deg rotation - cart. axis [0,1,0]
cryst. s( 3) = ( -1 0 0 )
( 0 1 0 )
( 0 0 -1 )
cart. s( 3) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 4 180 deg rotation - cart. axis [1,0,0]
cryst. s( 4) = ( 1 0 0 )
( 0 -1 0 )
( 0 0 -1 )
cart. s( 4) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 5 120 deg rotation - cart. axis [-1,-1,-1]
cryst. s( 5) = ( 0 0 1 )
( 1 0 0 )
( 0 1 0 )
cart. s( 5) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 6 120 deg rotation - cart. axis [-1,1,1]
cryst. s( 6) = ( 0 0 -1 )
( -1 0 0 )
( 0 1 0 )
cart. s( 6) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 7 120 deg rotation - cart. axis [1,1,-1]
cryst. s( 7) = ( 0 0 -1 )
( 1 0 0 )
( 0 -1 0 )
cart. s( 7) = ( 0.0000000 1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 8 120 deg rotation - cart. axis [1,-1,1]
cryst. s( 8) = ( 0 0 1 )
( -1 0 0 )
( 0 -1 0 )
cart. s( 8) = ( 0.0000000 -1.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 9 120 deg rotation - cart. axis [1,1,1]
cryst. s( 9) = ( 0 1 0 )
( 0 0 1 )
( 1 0 0 )
cart. s( 9) = ( 0.0000000 0.0000000 1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 10 120 deg rotation - cart. axis [-1,1,-1]
cryst. s(10) = ( 0 -1 0 )
( 0 0 -1 )
( 1 0 0 )
cart. s(10) = ( 0.0000000 0.0000000 1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 11 120 deg rotation - cart. axis [1,-1,-1]
cryst. s(11) = ( 0 -1 0 )
( 0 0 1 )
( -1 0 0 )
cart. s(11) = ( 0.0000000 0.0000000 -1.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 12 120 deg rotation - cart. axis [-1,-1,1]
cryst. s(12) = ( 0 1 0 )
( 0 0 -1 )
( -1 0 0 )
cart. s(12) = ( 0.0000000 0.0000000 -1.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 13 inv. 180 deg rotation - cart. axis [1,1,0]
cryst. s(13) = ( 0 -1 0 )
( -1 0 0 )
( 0 0 1 )
cart. s(13) = ( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 14 inv. 180 deg rotation - cart. axis [1,-1,0]
cryst. s(14) = ( 0 1 0 )
( 1 0 0 )
( 0 0 1 )
cart. s(14) = ( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
isym = 15 inv. 90 deg rotation - cart. axis [0,0,-1]
cryst. s(15) = ( 0 1 0 )
( -1 0 0 )
( 0 0 -1 )
cart. s(15) = ( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 16 inv. 90 deg rotation - cart. axis [0,0,1]
cryst. s(16) = ( 0 -1 0 )
( 1 0 0 )
( 0 0 -1 )
cart. s(16) = ( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
isym = 17 inv. 180 deg rotation - cart. axis [1,0,1]
cryst. s(17) = ( 0 0 -1 )
( 0 1 0 )
( -1 0 0 )
cart. s(17) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 18 inv. 180 deg rotation - cart. axis [-1,0,1]
cryst. s(18) = ( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
cart. s(18) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 19 inv. 90 deg rotation - cart. axis [0,1,0]
cryst. s(19) = ( 0 0 1 )
( 0 -1 0 )
( -1 0 0 )
cart. s(19) = ( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( 1.0000000 0.0000000 0.0000000 )
isym = 20 inv. 90 deg rotation - cart. axis [0,-1,0]
cryst. s(20) = ( 0 0 -1 )
( 0 -1 0 )
( 1 0 0 )
cart. s(20) = ( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
( -1.0000000 0.0000000 0.0000000 )
isym = 21 inv. 180 deg rotation - cart. axis [0,1,1]
cryst. s(21) = ( 1 0 0 )
( 0 0 -1 )
( 0 -1 0 )
cart. s(21) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
isym = 22 inv. 180 deg rotation - cart. axis [0,1,-1]
cryst. s(22) = ( 1 0 0 )
( 0 0 1 )
( 0 1 0 )
cart. s(22) = ( 1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 23 inv. 90 deg rotation - cart. axis [-1,0,0]
cryst. s(23) = ( -1 0 0 )
( 0 0 1 )
( 0 -1 0 )
cart. s(23) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 -1.0000000 )
( 0.0000000 1.0000000 0.0000000 )
isym = 24 inv. 90 deg rotation - cart. axis [1,0,0]
cryst. s(24) = ( -1 0 0 )
( 0 0 -1 )
( 0 1 0 )
cart. s(24) = ( -1.0000000 0.0000000 0.0000000 )
( 0.0000000 0.0000000 1.0000000 )
( 0.0000000 -1.0000000 0.0000000 )
point group T_d (-43m)
there are 5 classes
the character table:
E 8C3 3C2 6S4 6s_d
A_1 1.00 1.00 1.00 1.00 1.00
A_2 1.00 1.00 1.00 -1.00 -1.00
E 2.00 -1.00 2.00 0.00 0.00
T_1 3.00 0.00 -1.00 1.00 -1.00
T_2 3.00 0.00 -1.00 -1.00 1.00
the symmetry operations in each class:
E 1
3C2 2 3 4
8C3 5 7 8 6 12 9 10 11
6s_d 13 14 17 18 21 22
6S4 15 16 20 19 23 24
Cartesian axes
site n. atom positions (alat units)
1 Cu tau( 1) = ( 0.2500000 0.2500000 0.2500000
)
2 Cu tau( 2) = ( 0.7500000 0.7500000 0.2500000
)
3 Cu tau( 3) = ( 0.7500000 0.2500000 0.7500000
)
4 Cu tau( 4) = ( 0.2500000 0.7500000 0.7500000
)
5 Cu tau( 5) = ( 1.2500000 1.2500000 0.2500000
)
6 Cu tau( 6) = ( 1.2500000 0.2500000 0.2500000
)
7 Cu tau( 7) = ( 0.2500000 1.2500000 1.2500000
)
8 Cu tau( 8) = ( 0.2500000 0.2500000 1.2500000
)
9 Cu tau( 9) = ( 1.2500000 1.2500000 1.2500000
)
10 Cu tau( 10) = ( 1.2500000 0.2500000 1.2500000
)
11 Cu tau( 11) = ( 0.2500000 1.2500000 0.2500000
)
12 Cu tau( 12) = ( 1.7500000 1.7500000 0.2500000
)
13 Cu tau( 13) = ( 1.7500000 0.7500000 0.2500000
)
14 Cu tau( 14) = ( 0.7500000 1.7500000 1.2500000
)
15 Cu tau( 15) = ( 0.7500000 0.7500000 1.2500000
)
16 Cu tau( 16) = ( 1.7500000 1.7500000 1.2500000
)
17 Cu tau( 17) = ( 1.7500000 0.7500000 1.2500000
)
18 Cu tau( 18) = ( 0.7500000 1.7500000 0.2500000
)
19 Cu tau( 19) = ( 1.7500000 1.2500000 0.7500000
)
20 Cu tau( 20) = ( 1.7500000 0.2500000 0.7500000
)
21 Cu tau( 21) = ( 0.7500000 1.2500000 1.7500000
)
22 Cu tau( 22) = ( 0.7500000 0.2500000 1.7500000
)
23 Cu tau( 23) = ( 1.7500000 1.2500000 1.7500000
)
24 Cu tau( 24) = ( 1.7500000 0.2500000 1.7500000
)
25 Cu tau( 25) = ( 0.7500000 1.2500000 0.7500000
)
26 Cu tau( 26) = ( 1.2500000 1.7500000 0.7500000
)
27 Cu tau( 27) = ( 1.2500000 0.7500000 0.7500000
)
28 Cu tau( 28) = ( 0.2500000 1.7500000 1.7500000
)
29 Cu tau( 29) = ( 0.2500000 0.7500000 1.7500000
)
30 Cu tau( 30) = ( 1.2500000 1.7500000 1.7500000
)
31 Cu tau( 31) = ( 1.2500000 0.7500000 1.7500000
)
32 Cu tau( 32) = ( 0.2500000 1.7500000 0.7500000
)
33 O tau( 33) = ( 0.0000000 0.0000000 0.0000000
)
34 O tau( 34) = ( 0.5000000 0.5000000 0.5000000
)
35 O tau( 35) = ( 1.0000000 1.0000000 0.0000000
)
36 O tau( 36) = ( 1.0000000 0.0000000 0.0000000
)
37 O tau( 37) = ( 0.0000000 1.0000000 1.0000000
)
38 O tau( 38) = ( 0.0000000 0.0000000 1.0000000
)
39 O tau( 39) = ( 1.0000000 0.0000000 1.0000000
)
40 O tau( 40) = ( 0.0000000 1.0000000 0.0000000
)
41 O tau( 41) = ( 1.5000000 1.5000000 0.5000000
)
42 O tau( 42) = ( 1.5000000 0.5000000 0.5000000
)
43 O tau( 43) = ( 0.5000000 1.5000000 1.5000000
)
44 O tau( 44) = ( 0.5000000 0.5000000 1.5000000
)
45 O tau( 45) = ( 1.5000000 1.5000000 1.5000000
)
46 O tau( 46) = ( 1.5000000 0.5000000 1.5000000
)
47 O tau( 47) = ( 0.5000000 1.5000000 0.5000000
)
Crystallographic axes
site n. atom positions (cryst. coord.)
1 Cu tau( 1) = ( 0.1250000 0.1250000 0.1250000 )
2 Cu tau( 2) = ( 0.3750000 0.3750000 0.1250000 )
3 Cu tau( 3) = ( 0.3750000 0.1250000 0.3750000 )
4 Cu tau( 4) = ( 0.1250000 0.3750000 0.3750000 )
5 Cu tau( 5) = ( 0.6250000 0.6250000 0.1250000 )
6 Cu tau( 6) = ( 0.6250000 0.1250000 0.1250000 )
7 Cu tau( 7) = ( 0.1250000 0.6250000 0.6250000 )
8 Cu tau( 8) = ( 0.1250000 0.1250000 0.6250000 )
9 Cu tau( 9) = ( 0.6250000 0.6250000 0.6250000 )
10 Cu tau( 10) = ( 0.6250000 0.1250000 0.6250000 )
11 Cu tau( 11) = ( 0.1250000 0.6250000 0.1250000 )
12 Cu tau( 12) = ( 0.8750000 0.8750000 0.1250000 )
13 Cu tau( 13) = ( 0.8750000 0.3750000 0.1250000 )
14 Cu tau( 14) = ( 0.3750000 0.8750000 0.6250000 )
15 Cu tau( 15) = ( 0.3750000 0.3750000 0.6250000 )
16 Cu tau( 16) = ( 0.8750000 0.8750000 0.6250000 )
17 Cu tau( 17) = ( 0.8750000 0.3750000 0.6250000 )
18 Cu tau( 18) = ( 0.3750000 0.8750000 0.1250000 )
19 Cu tau( 19) = ( 0.8750000 0.6250000 0.3750000 )
20 Cu tau( 20) = ( 0.8750000 0.1250000 0.3750000 )
21 Cu tau( 21) = ( 0.3750000 0.6250000 0.8750000 )
22 Cu tau( 22) = ( 0.3750000 0.1250000 0.8750000 )
23 Cu tau( 23) = ( 0.8750000 0.6250000 0.8750000 )
24 Cu tau( 24) = ( 0.8750000 0.1250000 0.8750000 )
25 Cu tau( 25) = ( 0.3750000 0.6250000 0.3750000 )
26 Cu tau( 26) = ( 0.6250000 0.8750000 0.3750000 )
27 Cu tau( 27) = ( 0.6250000 0.3750000 0.3750000 )
28 Cu tau( 28) = ( 0.1250000 0.8750000 0.8750000 )
29 Cu tau( 29) = ( 0.1250000 0.3750000 0.8750000 )
30 Cu tau( 30) = ( 0.6250000 0.8750000 0.8750000 )
31 Cu tau( 31) = ( 0.6250000 0.3750000 0.8750000 )
32 Cu tau( 32) = ( 0.1250000 0.8750000 0.3750000 )
33 O tau( 33) = ( 0.0000000 0.0000000 0.0000000 )
34 O tau( 34) = ( 0.2500000 0.2500000 0.2500000 )
35 O tau( 35) = ( 0.5000000 0.5000000 0.0000000 )
36 O tau( 36) = ( 0.5000000 0.0000000 0.0000000 )
37 O tau( 37) = ( 0.0000000 0.5000000 0.5000000 )
38 O tau( 38) = ( 0.0000000 0.0000000 0.5000000 )
39 O tau( 39) = ( 0.5000000 0.0000000 0.5000000 )
40 O tau( 40) = ( 0.0000000 0.5000000 0.0000000 )
41 O tau( 41) = ( 0.7500000 0.7500000 0.2500000 )
42 O tau( 42) = ( 0.7500000 0.2500000 0.2500000 )
43 O tau( 43) = ( 0.2500000 0.7500000 0.7500000 )
44 O tau( 44) = ( 0.2500000 0.2500000 0.7500000 )
45 O tau( 45) = ( 0.7500000 0.7500000 0.7500000 )
46 O tau( 46) = ( 0.7500000 0.2500000 0.7500000 )
47 O tau( 47) = ( 0.2500000 0.7500000 0.2500000 )
number of k points= 4 Marzari-Vanderbilt smearing, width (Ry)=
0.0050
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
k( 2) = ( 0.0000000 0.0000000 0.1666667), wk = 0.4444444
k( 3) = ( 0.0000000 0.1666667 0.1666667), wk = 0.8888889
k( 4) = ( 0.1666667 0.1666667 0.1666667), wk = 0.5925926
cryst. coord.
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0740741
k( 2) = ( 0.0000000 0.0000000 0.3333333), wk = 0.4444444
k( 3) = ( 0.0000000 0.3333333 0.3333333), wk = 0.8888889
k( 4) = ( 0.3333333 0.3333333 0.3333333), wk = 0.5925926
Dense grid: 668829 G-vectors FFT dimensions: ( 120, 120, 120)
Smooth grid: 478785 G-vectors FFT dimensions: ( 100, 100, 100)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 242.01 Mb ( 59850, 265)
NL pseudopotentials 635.61 Mb ( 59850, 696)
Each V/rho on FFT grid 26.37 Mb ( 1728000)
Each G-vector array 5.10 Mb ( 668829)
G-vector shells 0.02 Mb ( 2455)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 968.03 Mb ( 59850, 1060)
Each subspace H/S matrix 17.14 Mb ( 1060, 1060)
Each <psi_i|beta_j> matrix 2.81 Mb ( 696, 265)
Arrays for rho mixing 210.94 Mb ( 1728000, 8)
Check: negative/imaginary core charge= -0.000025 0.000000
Initial potential from superposition of free atoms
starting charge 441.99268, renormalised to 442.00000
Starting wfc are 348 randomized atomic wfcs
Checking if some PAW data can be deallocated...
total cpu time spent up to now is 1375.2 secs
Self-consistent Calculation
iteration # 1 ecut= 90.00 Ry beta=0.70
Davidson diagonalization with overlap
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Error in routine cegterg (5014):
cannot allocate psi
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
stopping ...
--------------------------------------------------------------------------
MPI_ABORT was invoked on rank 0 in communicator MPI_COMM_WORLD
with errorcode 1.
NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.
You may or may not see output from other processes, depending on
exactly when Open MPI kills them.
--------------------------------------------------------------------------
thanks
Ismail Ibrahim Idowu
Ahmadu Bello University Zaria, Nigeria
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20190521/2f190fcc/attachment.html>
More information about the users
mailing list