[QE-users] Finding Parity of Different Bands in Topological Insulator
Asad Mahmood
amahmood at phys.qau.edu.pk
Fri Sep 28 13:26:31 CEST 2018
Here is the input file:
&control
calculation = 'scf'
restart_mode='from_scratch',
pseudo_dir = './../../../Pseudo',
prefix='arsenene',
verbosity = 'high'
/
&system
ibrav = 4,
nat= 2, ntyp= 1,
ibrav= 4,
celldm(1) =7.8,
celldm(3) =6.103648,
ecutwfc =30.0,
occupations='smearing',
smearing='gauss', degauss=0.02,
lspinorb=.true
noncolin=.true
nbnd = 20
/
&electrons
!diagonalization='david'
electron_maxstep = 300
!mixing_mode = 'plain'
mixing_beta = 0.7
conv_thr = 1.0d-10
/
ATOMIC_SPECIES
As 74.9216 As.rel-pbe-n-rrkjus_psl.0.2.UPF
ATOMIC_POSITIONS crystal
As 0.333333333 0.666666666 0.524859275
As 0.666666666 0.333333333 0.475140725
K_POINTS crystal
1
0.5 0.0 0.0 1
Note that in the above highlighted portion I am using one of the TRIM
points, i.e. M1. Where other TRIM points are M2, M3 and G with coordinates
0.0 0.5 0.0, -0.5 0.0 0.0 and 0.0 0.0 0.0 respectively.
After SCF (pw.x) calculation, I run the bands,x calculation. The relevant
portion of the output is :
**************************************************************************
xk=( -0.50000, 0.28868, 0.00000 )
double point group C_2h (2/m)
there are 8 classes and 4 irreducible representations
the character table:
E -E C2 -C2 i -i s_h -s_h
G_3+ 1.00 -1.00 0.00 0.00 1.00 -1.00 0.00 0.00
G_4+ 1.00 -1.00 0.00 0.00 1.00 -1.00 0.00 0.00
G_3- 1.00 -1.00 0.00 0.00 -1.00 1.00 0.00 0.00
G_4- 1.00 -1.00 0.00 0.00 -1.00 1.00 0.00 0.00
imaginary part
E -E C2 -C2 i -i s_h -s_h
G_3+ 0.00 0.00 1.00 -1.00 0.00 0.00 1.00 -1.00
G_4+ 0.00 0.00 -1.00 1.00 0.00 0.00 -1.00 1.00
G_3- 0.00 0.00 1.00 -1.00 0.00 0.00 -1.00 1.00
G_4- 0.00 0.00 -1.00 1.00 0.00 0.00 1.00 -1.00
the symmetry operations in each class and the name of the first
element:
E 1
-E -1
C2 2
-C2 -2
i 3
-i -3
s_h 4
-s_h -4
Band symmetry, C_2h (2/m) double point group:
e( 1 - 2) = -14.19192 eV 2 --> G_3-
e( 1 - 2) = -14.19192 eV 2 --> G_4-
e( 3 - 4) = -12.67503 eV 2 --> G_3+
e( 3 - 4) = -12.67503 eV 2 --> G_4+
e( 5 - 6) = -6.29105 eV 2 --> G_3+
e( 5 - 6) = -6.29105 eV 2 --> G_4+
e( 7 - 8) = -5.79866 eV 2 --> G_3-
e( 7 - 8) = -5.79866 eV 2 --> G_4-
e( 9 - 10) = -4.65984 eV 2 --> G_3-
e( 9 - 10) = -4.65984 eV 2 --> G_4-
e( 11 - 12) = -2.39948 eV 2 --> G_3+
e( 11 - 12) = -2.39948 eV 2 --> G_4+
e( 13 - 14) = -0.22470 eV 2 --> G_3-
e( 13 - 14) = -0.22470 eV 2 --> G_4-
e( 15 - 16) = 0.10174 eV 2 --> G_3+
e( 15 - 16) = 0.10174 eV 2 --> G_4+
e( 17 - 18) = 2.74250 eV 2 --> G_3+
e( 17 - 18) = 2.74250 eV 2 --> G_4+
e( 19 - 20) = 3.59948 eV 2 --> G_3-
e( 19 - 20) = 3.59948 eV 2 --> G_4-
Is highlighted K point in the output file okay?? since I used 0.5 0 0 but
it is xk=( -0.50000, 0.28868, 0.00000 ).
Moreover, I get the same result for M2 and M3 (which should not happen
because then Z2 = 0 which contradicts the dedfinitions of TI)
Please help.
On Thu, Sep 27, 2018 at 4:19 PM Asad Mahmood <amahmood at phys.qau.edu.pk>
wrote:
> Hi everyone,
>
> I am working with 2D materials, applying biaxial strain. At some strain
> value, the electronic structure exhibits the band diagram similar to that
> of a Topological Insulator (as I could observe band inversion from partial
> DOS too). The material I am working with has inversion symmetry which
> implies that I can find parity eigen values at different bands(then I can
> find Z2 Topological Invariant using parity eigen values).
> My question is:
>
> How can we obtain parities (or directly Z2 values, if possible) using
> Quantum Espresso for a given band diagram?
>
> Regards,
> Asad Mahmood,
> Physics Department,
> Q.A.U, Islamabad,
> Pakistan
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.quantum-espresso.org/pipermail/users/attachments/20180928/4f4e68b3/attachment.html>
More information about the users
mailing list