[Pw_forum] uniform k-point grid with option 'automatic'??

TIMOTHY UTO timuto at yahoo.com
Thu Apr 30 18:41:01 CEST 2015


please is there kpoint generator in QE?

--------------------------------------------
On Thu, 4/30/15, Ludwig, Stephan <stephan.ludwig at pi1.physik.uni-stuttgart.de> wrote:

 Subject: Re: [Pw_forum] uniform k-point grid with option 'automatic'??
 To: "PWSCF Forum" <pw_forum at pwscf.org>
 Date: Thursday, April 30, 2015, 2:47 PM
 
 RE: [Pw_forum]
 uniform k-point grid with option
 'automatic'??
 Dear Paolo,
 
 thank you for your reply,
 I used the kpoints.x programm to generate a
 kpoint-card
 
 input:
 bravais lattice >> 7
 
 filout [mesh_k] >> kkard1
  enter
 celldm(3) >> 3.0294421487603306
  mesh:
 n1 n2 n3 >> 5 5 5
  mesh: k1 k2 k3 (0
 no shift, 1 shifted) >> 0 0 0
  write
 all k? [f] >> y
 
 # of k-points == 125 of 125
 
 what I receive is
 
  125
  1 0.0000000 0.0000000
 0.0000000 1.00
  2 0.2000000 -0.2000000
 0.0000000 4.00
  3 0.4000000 -0.4000000
 0.0000000 4.00
  4 0.6000000 -0.6000000
 0.0000000 0.00 3
  5 0.8000000 -0.8000000
 0.0000000 0.00 2
  6 0.0000000 0.2000000
 0.0660188 8.00
  7 0.2000000 0.0000000
 0.0660188 0.00 6
  8 0.4000000 -0.2000000
 0.0660188 16.00
  9 0.6000000 -0.4000000
 0.0660188 8.00
  10 0.8000000 -0.6000000
 0.0660188 0.00 8
  11 0.0000000 0.4000000
 0.1320375 8.00
  12 0.2000000 0.2000000
 0.1320375 8.00
  13 0.4000000 0.0000000
 0.1320375 0.00 11
  14 0.6000000 -0.2000000
 0.1320375 16.00
  15 0.8000000 -0.4000000
 0.1320375 0.00 14
  16 0.0000000 0.6000000
 0.1980563 0.00 11
  17 0.2000000 0.4000000
 0.1980563 0.00 14
  18 0.4000000 0.2000000
 0.1980563 0.00 14
  19 0.6000000 0.0000000
 0.1980563 0.00 11
  20 0.8000000 -0.2000000
 0.1980563 0.00 12
  21 0.0000000 0.8000000
 0.2640750 0.00 6
  22 0.2000000 0.6000000
 0.2640750 0.00 8
  23 0.4000000 0.4000000
 0.2640750 0.00 9
  24 0.6000000 0.2000000
 0.2640750 0.00 8
  25 0.8000000 0.0000000
 0.2640750 0.00 6
  26 -0.2000000 0.0000000
 0.0660188 0.00 6
  27 0.0000000 -0.2000000
 0.0660188 0.00 6
  28 0.2000000 -0.4000000
 0.0660188 0.00 8
  29 0.4000000 -0.6000000
 0.0660188 0.00 9
  30 0.6000000 -0.8000000
 0.0660188 0.00 8
  31 -0.2000000 0.2000000
 0.1320375 0.00 12
  32 0.0000000 0.0000000
 0.1320375 2.00
  33 0.2000000 -0.2000000
 0.1320375 0.00 12
  34 0.4000000 -0.4000000
 0.1320375 8.00
  35 0.6000000 -0.6000000
 0.1320375 0.00 34
  36 -0.2000000 0.4000000
 0.1980563 0.00 14
  37 0.0000000 0.2000000
 0.1980563 8.00
  38 0.2000000 0.0000000
 0.1980563 0.00 37
  39 0.4000000 -0.2000000
 0.1980563 0.00 14
  40 0.6000000 -0.4000000
 0.1980563 0.00 34
  41 -0.2000000 0.6000000
 0.2640750 0.00 8
  42 0.0000000 0.4000000
 0.2640750 8.00
  43 0.2000000 0.2000000
 0.2640750 8.00
  44 0.4000000 0.0000000
 0.2640750 0.00 42
  45 0.6000000 -0.2000000
 0.2640750 0.00 8
  46 -0.2000000 0.8000000
 0.3300938 0.00 2
  47 0.0000000 0.6000000
 0.3300938 4.00
  48 0.2000000 0.4000000
 0.3300938 8.00
  49 0.4000000 0.2000000
 0.3300938 0.00 48
  50 0.6000000 0.0000000
 0.3300938 0.00 47
  51 -0.4000000 0.0000000
 0.1320375 0.00 11
  52 -0.2000000 -0.2000000
 0.1320375 0.00 12
  53 0.0000000 -0.4000000
 0.1320375 0.00 11
  54 0.2000000 -0.6000000
 0.1320375 0.00 14
  55 0.4000000 -0.8000000
 0.1320375 0.00 14
  56 -0.4000000 0.2000000
 0.1980563 0.00 14
  57 -0.2000000 0.0000000
 0.1980563 0.00 37
  58 0.0000000 -0.2000000
 0.1980563 0.00 37
  59 0.2000000 -0.4000000
 0.1980563 0.00 14
  60 0.4000000 -0.6000000
 0.1980563 0.00 34
  61 -0.4000000 0.4000000
 0.2640750 0.00 9
  62 -0.2000000 0.2000000
 0.2640750 0.00 43
  63 0.0000000 0.0000000
 0.2640750 2.00
  64 0.2000000 -0.2000000
 0.2640750 0.00 43
  65 0.4000000 -0.4000000
 0.2640750 0.00 9
  66 -0.4000000 0.6000000
 0.3300938 0.00 3
  67 -0.2000000 0.4000000
 0.3300938 0.00 48
  68 0.0000000 0.2000000
 0.3300938 4.00
  69 0.2000000 0.0000000
 0.3300938 0.00 68
  70 0.4000000 -0.2000000
 0.3300938 0.00 48
  71 -0.4000000 0.8000000
 0.3961125 0.00 8
  72 -0.2000000 0.6000000
 0.3961125 0.00 8
  73 0.0000000 0.4000000
 0.3961125 0.00 42
  74 0.2000000 0.2000000
 0.3961125 0.00 43
  75 0.4000000 0.0000000
 0.3961125 0.00 42
  76 -0.6000000 0.0000000
 0.1980563 0.00 11
  77 -0.4000000 -0.2000000
 0.1980563 0.00 14
  78 -0.2000000 -0.4000000
 0.1980563 0.00 14
  79 0.0000000 -0.6000000
 0.1980563 0.00 11
  80 0.2000000 -0.8000000
 0.1980563 0.00 12
  81 -0.6000000 0.2000000
 0.2640750 0.00 8
  82 -0.4000000 0.0000000
 0.2640750 0.00 42
  83 -0.2000000 -0.2000000
 0.2640750 0.00 43
  84 0.0000000 -0.4000000
 0.2640750 0.00 42
  85 0.2000000 -0.6000000
 0.2640750 0.00 8
  86 -0.6000000 0.4000000
 0.3300938 0.00 3
  87 -0.4000000 0.2000000
 0.3300938 0.00 48
  88 -0.2000000 0.0000000
 0.3300938 0.00 68
  89 0.0000000 -0.2000000
 0.3300938 0.00 68
  90 0.2000000 -0.4000000
 0.3300938 0.00 48
  91 -0.6000000 0.6000000
 0.3961125 0.00 9
  92 -0.4000000 0.4000000
 0.3961125 0.00 9
  93 -0.2000000 0.2000000
 0.3961125 0.00 43
  94 0.0000000 0.0000000
 0.3961125 0.00 63
  95 0.2000000 -0.2000000
 0.3961125 0.00 43
  96 -0.6000000 0.8000000
 0.4621313 0.00 14
  97 -0.4000000 0.6000000
 0.4621313 0.00 34
  98 -0.2000000 0.4000000
 0.4621313 0.00 14
  99 0.0000000 0.2000000
 0.4621313 0.00 37
  100 0.2000000 0.0000000
 0.4621313 0.00 37
  101 -0.8000000 0.0000000
 0.2640750 0.00 6
  102 -0.6000000 -0.2000000
 0.2640750 0.00 8
  103 -0.4000000 -0.4000000
 0.2640750 0.00 9
  104 -0.2000000 -0.6000000
 0.2640750 0.00 8
  105 0.0000000 -0.8000000
 0.2640750 0.00 6
  106 -0.8000000 0.2000000
 0.3300938 0.00 2
  107 -0.6000000 0.0000000
 0.3300938 0.00 47
  108 -0.4000000 -0.2000000
 0.3300938 0.00 48
  109 -0.2000000 -0.4000000
 0.3300938 0.00 48
  110 0.0000000 -0.6000000
 0.3300938 0.00 47
  111 -0.8000000 0.4000000
 0.3961125 0.00 8
  112 -0.6000000 0.2000000
 0.3961125 0.00 8
  113 -0.4000000 0.0000000
 0.3961125 0.00 42
  114 -0.2000000 -0.2000000
 0.3961125 0.00 43
  115 0.0000000 -0.4000000
 0.3961125 0.00 42
  116 -0.8000000 0.6000000
 0.4621313 0.00 14
  117 -0.6000000 0.4000000
 0.4621313 0.00 34
  118 -0.4000000 0.2000000
 0.4621313 0.00 14
  119 -0.2000000 0.0000000
 0.4621313 0.00 37
  120 0.0000000 -0.2000000
 0.4621313 0.00 37
  121 -0.8000000 0.8000000
 0.5281500 0.00 12
  122 -0.6000000 0.6000000
 0.5281500 0.00 34
  123 -0.4000000 0.4000000
 0.5281500 0.00 34
  124 -0.2000000 0.2000000
 0.5281500 0.00 12
  125 0.0000000 0.0000000
 0.5281500 0.00 32
 First question: What do the last two column
 means?
 
 The programm epsilon.x-manual says:
 >     
    "...must be performed with a uniform k-points grid
 and all
 >          k-points
 weights must be equal to each other,.." 
 
 Is this achieved with this
 k-grid?
 What does uniform actually means?
 Does it mean equal spacing between kpoints at each position
 of the grid
 or does it mean equal spacing at
 each position and in each direction. So just homogenous or
 also isotropic grid?
 
 Thanks
 and regards
 
 Stephan
 Ludwig
 
 
 
 
 -----Original message-----
 From: Paolo
 Giannozzi <paolo.giannozzi at uniud.it>
 Sent: Wednesday 29th
 April 2015 10:48
 To: PWSCF Forum
 <pw_forum at pwscf.org>
 Subject: Re: [Pw_forum]
 uniform k-point grid with option
 'automatic'??
 
 If you
 cannot use the automatic grid as provided by the
 "automatic"
 option of the K_POINTS
 card, you can use an auxiliary program
 "PW/tools/kpoints.x" to produce a
 uniform grid of k-points in the 
 complete
 Brillouin Zone.
 
 P.
 On Fri, 2015-04-24 at 17:25 +0200, Ludwig,
 Stephan wrote:
 
 >         
 >         
 >         
 >         I have a question
 concerning the option 'automatic' for
 >         k_point card:
 >         
 >         
 >         In order to use the
 epsilon.x postprocessing tool I need a
 >         uniform k-point grid. In
 the manual for epsilon.x
 >        
 (http://web.mit.edu/espresso_v5.0.1/i386_linux26/espresso-5.0.1/PP/Doc/eps_man.pdf)
 >         
 >         
 >         it is said that the option
 automatic is not suitable:
 >         
 >         
 >         
 >         Epsilon.x doesn’t
 support the reduction of the k-points grid
 >         into the unreducible
 Brillouin zone, so the previous PW runs
 >         must be performed with a
 uniform k-points grid and all
 >         k-points weights
 >         
 >         must be equal to each
 other, i.e. in the k-points card the
 >         k-points coordinates must
 be given manually in crystal or alat
 >         or bohr , but not with the
 automatic option.
 >         
 >         
 >         
 >         
 >         On the other hand I read
 in the pw_user_guide
 >        
 (http://www.quantum-espresso.org/wp-content/uploads/Doc/pw_user_guide.pdf) 
 that in order to obtain a uniform k-point grid I shall use
 the option automatic:
 >        
 
 >         
 >         
 >          In the latter case, you
 should specify a uniform grid of
 >         points. For DOS
 calculations you should
 >        
 chooseoccupations='tetrahedra' together with an
 automatically
 >         generated
 uniform k-point grid (card KPOINTS with option
 >         \automatic").
 >         
 >         So what is the truth?
 >         
 >         
 >         
 >         Thanks and regards
 >         
 >         
 >         
 >         Stephan Ludwig
 >         
 >         
 >           
 >         
 >         
 >         
 >
 _______________________________________________
 > Pw_forum mailing list
 >
 Pw_forum at pwscf.org
 >
 http://pwscf.org/mailman/listinfo/pw_forum
 
 -- 
  Paolo
 Giannozzi, Dept. Chemistry&Physics&Environment, 
  Univ. Udine, via delle Scienze 208, 33100
 Udine, Italy
  Phone +39-0432-558216, fax
 +39-0432-558222 
 
 _______________________________________________
 Pw_forum mailing list
 Pw_forum at pwscf.org
 http://pwscf.org/mailman/listinfo/pw_forum
 
 -----Inline Attachment Follows-----
 
 _______________________________________________
 Pw_forum mailing list
 Pw_forum at pwscf.org
 http://pwscf.org/mailman/listinfo/pw_forum




More information about the users mailing list