[Pw_forum] different results for electron-phonon calculation for the same q-point
Florian Rittweger
f.rittweger at gmx.de
Wed Jun 25 10:42:47 CEST 2014
Dear all,
I calculate the electron-phonon coupling strength for bulk aluminum with
QE V.5.1, using two grids of q-points - 222 and 444. Looking at a
specific q-point which is contained in both grids, namely q = (0.0,
-1.0, 0.0), the results for the electron-phonon coefficient lambda and
the linewidth gamma differs. Additionally i did the electron-phonon
calculation for the single q-point with ldisp=.false., yielding
different results as well.
electron-phonon input:
222-Q-POINT-GRID
&inputph
...
ldisp=.true.
nq1=2, nq2=2, nq3=2
/
444-Q-POINT-GRID
&inputph
...
ldisp=.true.
nq1=4, nq2=4, nq3=4
/
SINGLE Q-POINT
&inputph
...
ldisp=.false.
/
0.000 -1.000 0.000
The flags electron_phonon='interpolated', trans=.true.,
el_ph_sigma=0.005 and el_ph_nsigma=1 are used in all calculations.
electron-phonon output:
222-Q-POINT-GRID
Calculation of q = 0.0000000 -1.0000000 0.0000000
...
**************************************************************************
freq ( 1) = 4.913252 [THz] = 163.888446 [cm-1]
freq ( 2) = 4.913252 [THz] = 163.888446 [cm-1]
freq ( 3) = 10.206764 [THz] = 340.461002 [cm-1]
**************************************************************************
Mode symmetry, D_4h(4/mmm) point group:
freq ( 1 - 2) = 163.9 [cm-1] --> E_u X_5' M_5'
freq ( 3 - 3) = 340.5 [cm-1] --> A_2u X_4' M_4'
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 5.347024 states/spin/Ry/Unit Cell at Ef= 8.438471 eV
lambda( 1)= 1.4445 gamma= 178.06 GHz
lambda( 2)= 1.1812 gamma= 145.60 GHz
lambda( 3)= 0.3285 gamma= 174.76 GHz
444-Q-POINT-GRID
Calculation of q = 0.0000000 -1.0000000 0.0000000
...
**************************************************************************
freq ( 1) = 4.913092 [THz] = 163.883106 [cm-1]
freq ( 2) = 4.913092 [THz] = 163.883106 [cm-1]
freq ( 3) = 10.205145 [THz] = 340.406980 [cm-1]
**************************************************************************
Mode symmetry, D_4h(4/mmm) point group:
freq ( 1 - 2) = 163.9 [cm-1] --> E_u X_5' M_5'
freq ( 3 - 3) = 340.4 [cm-1] --> A_2u X_4' M_4'
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 5.347024 states/spin/Ry/Unit Cell at Ef= 8.438471 eV
lambda( 1)= 1.0271 gamma= 126.59 GHz
lambda( 2)= 1.5098 gamma= 186.09 GHz
lambda( 3)= 0.4284 gamma= 227.80 GHz
SINGLE Q-POINT
Calculation of q = 0.0000000 -1.0000000 0.0000000
...
**************************************************************************
freq ( 1) = 4.913143 [THz] = 163.884808 [cm-1]
freq ( 2) = 4.913143 [THz] = 163.884808 [cm-1]
freq ( 3) = 10.206794 [THz] = 340.462013 [cm-1]
**************************************************************************
Mode symmetry, D_4h(4/mmm) point group:
freq ( 1 - 2) = 163.9 [cm-1] --> E_u X_5' M_5'
freq ( 3 - 3) = 340.5 [cm-1] --> A_2u X_4' M_4'
electron-phonon interaction ...
Gaussian Broadening: 0.005 Ry, ngauss= 0
DOS = 5.347024 states/spin/Ry/Unit Cell at Ef= 8.438471 eV
lambda( 1)= 1.2835 gamma= 158.19 GHz
lambda( 2)= 1.2835 gamma= 158.19 GHz
lambda( 3)= 0.3946 gamma= 209.89 GHz
The dynamical matrices are equal in all three cases but the eigenvectors
(and therefor the values for lambda and gamma?) differ with respect to
direction and/or magnitude.
As far as i thought all three calculations should give the same results.
Is there an explanation why this shoudn't be true?
Any hints, discussion or explanation would be helpful.
With best regards,
Florian
-------------------------------------------------------------
Florian Rittweger, PhD student
Max Planck Institute of Microstructure Physics
Von-Seckendorff-Platz 1, Room 1.07
D-06120 Halle/Saale, Germany
Tel.: ++49 345 5525462
-------------------------------------------------------------
More information about the users
mailing list