[Pw_forum] Transmission calculation for simple metals

Vladislav Borisov vladislav.borisov at physik.uni-halle.de
Fri Jul 18 10:39:23 CEST 2014


Dear all,

I have a general question about calculating the transmission function 
for simple metals. On the example of ferromagnetic fcc cobalt, I performed 
a spin-polarized calculation of transmission using the latest version 
of PWCOND (v.5.1). Below are the input data for this system.


Input for the self-consistent calculation:

 &control
    calculation='scf',
    restart_mode='from_scratch',
    pseudo_dir = '/scratch/vborisov/pseudo/',
    outdir='/scratch/vborisov/tmp/Co-Transmission/',
    prefix='fct-2',
    wf_collect=.true.
 /
 &system
    ibrav = 6,
    celldm(1) = 7.35477531275,
    celldm(3) = 0.756973279,
    nat   = 4,
    ntyp  = 1,
    nspin = 2,
    nbnd  = 40,
    starting_magnetization(1)=+1.80,
    ecutwfc = 63.0,
    ecutrho = 504.0,
    occupations='smearing',
    smearing='methfessel-paxton',
    degauss=0.02
 /
 &electrons
    conv_thr = 1.0e-8
    mixing_beta = 0.25
 /
ATOMIC_SPECIES
  Co  58.933  Co.pbe-nd-rrkjus.UPF
ATOMIC_POSITIONS {crystal}
  Co  0.00  0.00  0.25
  Co  0.50  0.50  0.25
  Co  0.00  0.50  0.75
  Co  0.50  0.00  0.75
K_POINTS {automatic}
  15 15 20 0 0 0



One of the inputs for the transmission calculation:

 &inputcond
   outdir       = '/scratch/vborisov/tmp/Co-Transmission',
   prefixl      = 'fct-2',
   prefixs      = 'fct-2',
   tran_file    = 'TJ-k1550.Ef'
   ikind        = 1,
   iofspin      = 2,
   energy0      = 0.00d0,
   denergy      = -0.01d0,
   ewind        = 2.d0,
   epsproj      = 1.d-5,
   delgep       = 1.d-7,
   cutplot      = 3.d0,
   nz1          = 22
 /
   1
   0.00510204  0.13775510   1
   1


At the end of the output file, one finds the following data:

 ngper, shell number =          271         271
 ngper, n2d =          271         121
---  E-Ef =    0.0000000  k =    0.0051020   0.1377551
---  ie =          1  ik =          1
 Nchannels of the left tip =           30
 Right moving states:
   k1(2pi/a)   k2(2pi/a)   E-Ef (eV)
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682   0.0000000   0.0000000
  -0.0964682  -0.0000000   0.0000000
  -0.0964689  -0.0000000   0.0000000
  -0.0964705   0.0000000   0.0000000
  -0.0964798  -0.0000000   0.0000000
  -0.0965107   0.0000000   0.0000000
  -0.0965482   0.0000000   0.0000000
  -0.0966171   0.0000000   0.0000000
  -0.0968639   0.0000000   0.0000000
  -0.0985616   0.0000000   0.0000000
  -0.1341194   0.0000003   0.0000000
  -0.1855624   0.0000002   0.0000000
  -0.2949790   0.0000002   0.0000000
  -0.3297361   0.0000000   0.0000000
   0.4517894  -0.0000001   0.0000000
 Left moving states:
   k1(2pi/a)   k2(2pi/a)   E-Ef (eV)
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964682  -0.0000000   0.0000000
   0.0964689   0.0000000   0.0000000
   0.0964705   0.0000000   0.0000000
   0.0964798  -0.0000000   0.0000000
   0.0965107   0.0000000   0.0000000
   0.0965482   0.0000000   0.0000000
   0.0966171   0.0000000   0.0000000
   0.0968639   0.0000000   0.0000000
   0.0985616   0.0000000   0.0000000
   0.1341194   0.0000003   0.0000000
   0.1855624   0.0000002   0.0000000
   0.2949790   0.0000002   0.0000000
   0.3297361   0.0000000   0.0000000
  -0.4517894  -0.0000001   0.0000000
 
 to transmit
 Band j to band i transmissions and reflections:
    j         i     |T_ij|^2    |R_ij|^2
 
    1 -->     1     1.00000     0.00000
    1 -->     2     0.00000     0.00000
    1 -->     3     0.00000     0.00000
    1 -->     4     0.00000     0.00000
    1 -->     5     0.00000     0.00000
    1 -->     6     0.00000     0.00000
    1 -->     7     0.00000     0.00000
    1 -->     8     0.00000     0.00000
    1 -->     9     0.00000     0.00000
    1 -->    10     0.00000     0.00000
    1 -->    11     0.00000     0.00000
    1 -->    12     0.00000     0.00000
    1 -->    13     0.00000     0.00000
    1 -->    14     0.00000     0.00000
    1 -->    15     0.00000     0.00000
    1 -->    16     0.00000     0.00000
    1 -->    17     0.00000     0.00000
    1 -->    18     0.00000     0.00000
    1 -->    19     0.00000     0.00000
    1 -->    20     0.00000     0.00000
    1 -->    21     0.00000     0.00000
    1 -->    22     0.00000     0.00000
    1 -->    23     0.00000     0.00000
    1 -->    24     0.00000     0.00000
    1 -->    25     0.00000     0.00000
    1 -->    26     0.00000     0.00000
    1 -->    27     0.00000     0.00000
    1 -->    28     0.00000     0.00000
    1 -->    29     0.00000     0.00000
    1 -->    30     0.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
    2 -->     1     0.00000     0.00000
    2 -->     2     1.00000     0.00000
    2 -->     3     0.00000     0.00000
    2 -->     4     0.00000     0.00000
    2 -->     5     0.00000     0.00000
    2 -->     6     0.00000     0.00000
    2 -->     7     0.00000     0.00000
    2 -->     8     0.00000     0.00000
    2 -->     9     0.00000     0.00000
    2 -->    10     0.00000     0.00000
    2 -->    11     0.00000     0.00000

 ... (the same for all other channels)

   30 -->    24     0.00000     0.00000
   30 -->    25     0.00000     0.00000
   30 -->    26     0.00000     0.00000
   30 -->    27     0.00000     0.00000
   30 -->    28     0.00000     0.00000
   30 -->    29     0.00000     0.00000
   30 -->    30     1.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
          E-Ef(ev), T =    0.0000000  30.0000000
   T_tot     0.00000      0.30000E+02
 
     PWCOND       :  1m25.79s CPU     3m 6.30s WALL

     init         :     33.04s CPU    133.41s WALL (       1 calls)
     poten        :      0.02s CPU      0.02s WALL (       2 calls)
     local        :      2.43s CPU      2.46s WALL (       1 calls)
 
     scatter_forw :     49.34s CPU     49.42s WALL (       2 calls)
 
     compbs       :      0.83s CPU      0.84s WALL (       1 calls)
     compbs_2     :      0.62s CPU      0.63s WALL (       1 calls)


The transmission is way too large for this material, so the result is obviously wrong. 
However, if I set the epsproj parameter to a larger value, e.g. 10^-4, then I get the 
correct result T=4 (see below):

 ngper, shell number =          271         271
 ngper, n2d =          271          69
---  E-Ef =    0.0000000  k =    0.0051020   0.1377551
---  ie =          1  ik =          1
 Nchannels of the left tip =            4
 Right moving states:
   k1(2pi/a)   k2(2pi/a)   E-Ef (eV)
  -0.1543659   0.0000003   0.0000000
  -0.1880694   0.0000001   0.0000000
  -0.2967059   0.0000002   0.0000000
   0.4430621  -0.0000001   0.0000000
 Left moving states:
   k1(2pi/a)   k2(2pi/a)   E-Ef (eV)
   0.1543659   0.0000003   0.0000000
   0.1880695   0.0000002   0.0000000
   0.2967060   0.0000002   0.0000000
  -0.4430621  -0.0000001   0.0000000
 
 to transmit
 Band j to band i transmissions and reflections:
    j         i     |T_ij|^2    |R_ij|^2
 
    1 -->     1     1.00000     0.00000
    1 -->     2     0.00000     0.00000
    1 -->     3     0.00000     0.00000
    1 -->     4     0.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
    2 -->     1     0.00000     0.00000
    2 -->     2     1.00000     0.00000
    2 -->     3     0.00000     0.00000
    2 -->     4     0.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
    3 -->     1     0.00000     0.00000
    3 -->     2     0.00000     0.00000
    3 -->     3     1.00000     0.00000
    3 -->     4     0.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
    4 -->     1     0.00000     0.00000
    4 -->     2     0.00000     0.00000
    4 -->     3     0.00000     0.00000
    4 -->     4     1.00000     0.00000
   Total T_j, R_j =    1.00000  0.00000
 
          E-Ef(ev), T =    0.0000000   4.0000000
   T_tot     0.00000      0.40000E+01
 
     PWCOND       :  1m14.44s CPU     2m14.19s WALL

     init         :     33.20s CPU     92.90s WALL (       1 calls)
     poten        :      0.02s CPU      0.02s WALL (       2 calls)
     local        :      1.86s CPU      1.88s WALL (       1 calls)
 
     scatter_forw :     38.94s CPU     38.96s WALL (       2 calls)
 
     compbs       :      0.37s CPU      0.39s WALL (       1 calls)
     compbs_2     :      0.29s CPU      0.30s WALL (       1 calls)


This situation is observed quite seldom (a few points in the BZ out of 1000). 
For example, for metals like Li there is no such problem at all. Also metal-insulator-metal 
systems in the tunneling regime do not show the aforementioned inconsistencies. 
I would be grateful, if somebody could give an explanation, as to how the epsproj parameter 
can influence the result of the calculation in such a dramatic way and how one can decide 
on the optimal value of this parameter.

With kind regards,
Vladislav Borisov

Martin Luther University Halle-Wittenberg
Von-Seckendorff-Platz 1, Room 1.17
06120, Halle (Saale), Germany
Tel No: +49 (0) 345 55-25448
Fax No: +49 (0) 345 55-25446
Email: vladislav.borisov at physik.uni-halle.de




More information about the users mailing list