[Pw_forum] Can not restart a pbe0 calculation
Lesheng Li
leshengl at live.unc.edu
Wed Dec 4 15:40:56 CET 2013
Hi everyone,
I am now trying to run a pbe0 calculation with espresso, but when I restart the calculation, it seems just calculate from the beginning.
Here is my input file for the second run:
***************
&CONTROL
title='pbe0',
calculation='scf',
restart_mode='restart',
prefix='pbe0',
outdir='',
pseudo_dir = ''
/
&SYSTEM
ibrav = 8,
celldm(1) = 15.752755841,
celldm(2) = 1.0,
celldm(3) = 1.0,
celldm(4) = 0.0,
celldm(5) = 0.0,
celldm(6) = 0.0,
nat=64,
ecutwfc=30.0,
ecutrho=120.0,
ntyp=3,
nbnd=430,
tot_charge=0.00,
nspin=2,
starting_magnetization(2)= 0.5,
starting_magnetization(3)= -0.5,
occupations ='smearing',
degauss = 0.000005,
smearing = 'fd',
force_symmorphic= .true.,
input_dft='pbe0'
/
&electrons
startingpot='file',
startingwfc='file',
mixing_mode='local-TF',
!mixing_beta=0.07,
electron_maxstep = 700
/
ATOMIC_SPECIES
O 16.0 O.pbe-mt.UPF
Ni1 58.69 Ni.pbe-sp-mt_gipaw.UPF
Ni2 58.69 Ni.pbe-sp-mt_gipaw.UPF
ATOMIC_POSITIONS (angstrom)
Ni1 0.00000 0.00000 0.00000
Ni2 0.00000 2.08400 2.08400
Ni2 2.08400 0.00000 2.08400
Ni2 2.08400 2.08400 0.00000
O 2.08400 2.08400 2.08400
O 2.08400 0.00000 0.00000
O 0.00000 2.08400 0.00000
O 0.00000 0.00000 2.08400
Ni2 4.16800 0.00000 0.00000
Ni1 4.16800 2.08400 2.08400
Ni1 6.25300 0.00000 2.08400
Ni1 6.25300 2.08400 0.00000
O 6.25300 2.08400 2.08400
O 6.25300 0.00000 0.00000
O 4.16800 2.08400 0.00000
O 4.16800 0.00000 2.08400
Ni2 0.00000 4.16800 0.00000
Ni1 0.00000 6.25300 2.08400
Ni1 2.08400 4.16800 2.08400
Ni1 2.08400 6.25300 0.00000
O 2.08400 6.25300 2.08400
O 2.08400 4.16800 0.00000
O 0.00000 6.25300 0.00000
O 0.00000 4.16800 2.08400
Ni1 4.16800 4.16800 0.00000
Ni2 4.16800 6.25300 2.08400
Ni2 6.25300 4.16800 2.08400
Ni2 6.25300 6.25300 0.00000
O 6.25300 6.25300 2.08400
O 6.25300 4.16800 0.00000
O 4.16800 6.25300 0.00000
O 4.16800 4.16800 2.08400
Ni2 0.00000 0.00000 4.16800
Ni1 0.00000 2.08400 6.25300
Ni1 2.08400 0.00000 6.25300
Ni1 2.08400 2.08400 4.16800
O 2.08400 2.08400 6.25300
O 2.08400 0.00000 4.16800
O 0.00000 2.08400 4.16800
O 0.00000 0.00000 6.25300
Ni1 4.16800 0.00000 4.16800
Ni2 4.16800 2.08400 6.25300
Ni2 6.25300 0.00000 6.25300
Ni2 6.25300 2.08400 4.16800
O 6.25300 2.08400 6.25300
O 6.25300 0.00000 4.16800
O 4.16800 2.08400 4.16800
O 4.16800 0.00000 6.25300
Ni1 0.00000 4.16800 4.16800
Ni2 0.00000 6.25300 6.25300
Ni2 2.08400 4.16800 6.25300
Ni2 2.08400 6.25300 4.16800
O 2.08400 6.25300 6.25300
O 2.08400 4.16800 4.16800
O 0.00000 6.25300 4.16800
O 0.00000 4.16800 6.25300
Ni2 4.16800 4.16800 4.16800
Ni1 4.16800 6.25300 6.25300
Ni1 6.25300 4.16800 6.25300
Ni1 6.25300 6.25300 4.16800
O 6.25300 6.25300 6.25300
O 6.25300 4.16800 4.16800
O 4.16800 6.25300 4.16800
O 4.16800 4.16800 6.25300
K_POINTS automatic
4 4 4 0 0 0
***************
This is the standard output file:
***************
Program PWSCF v.5.0.2 (svn rev. 9392) starts on 26Nov2013 at 15: 0:58
This program is part of the open-source Quantum ESPRESSO suite
for quantum simulation of materials; please cite
"P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);
URL http://www.quantum-espresso.org",
in publications or presentations arising from this work. More details at
http://www.quantum-espresso.org/quote.php
Parallel version (MPI), running on 64 processors
R & G space division: proc/nbgrp/npool/nimage = 64
Current dimensions of program PWSCF are:
Max number of different atomic species (ntypx) = 10
Max number of k-points (npk) = 40000
Max angular momentum in pseudopotentials (lmaxx) = 3
Waiting for input...
Reading input from standard input
IMPORTANT: XC functional enforced from input :
Exchange-correlation = PBE0 ( 6 4 8 4 0)
EXX-fraction = 0.25
Any further DFT definition will be discarded
Please, verify this is what you really want
file O.pbe-mt.UPF: wavefunction(s) 4f renormalized
file Ni.pbe-sp-mt_gipaw.UPF: wavefunction(s) 3S 3P 3D 4S 4P 4D renormalized
file Ni.pbe-sp-mt_gipaw.UPF: wavefunction(s) 3S 3P 3D 4S 4P 4D renormalized
Atomic positions and unit cell read from directory:
/netscr/leshengl/PDP/NiO/bulk/scf/pbe0.save/
Nothing found: using input atomic positions and unit cell
Subspace diagonalization in iterative solution of the eigenvalue problem:
scalapack distributed-memory algorithm (size of sub-group: 5* 5 procs)
EXX: grid of k+q point setup nkqs = 13
Parallelization info
--------------------
sticks: dense smooth PW G-vecs: dense smooth PW
Min 37 37 10 1352 1352 202
Max 39 39 11 1357 1357 209
Sum 2377 2377 673 86791 86791 13133
Title:
pbe0
bravais-lattice index = 8
lattice parameter (alat) = 15.7528 a.u.
unit-cell volume = 3909.0356 (a.u.)^3
number of atoms/cell = 64
number of atomic types = 3
number of electrons = 768.00
number of Kohn-Sham states= 430
kinetic-energy cutoff = 30.0000 Ry
charge density cutoff = 120.0000 Ry
convergence threshold = 1.0E-06
mixing beta = 0.7000
number of iterations used = 8 local-TF mixing
Exchange-correlation = PBE0 ( 6 4 8 4 0)
EXX-fraction = 0.25
celldm(1)= 15.752756 celldm(2)= 1.000000 celldm(3)= 1.000000
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000
crystal axes: (cart. coord. in units of alat)
a(1) = ( 1.000000 0.000000 0.000000 )
a(2) = ( 0.000000 1.000000 0.000000 )
a(3) = ( 0.000000 0.000000 1.000000 )
reciprocal axes: (cart. coord. in units 2 pi/alat)
b(1) = ( 1.000000 0.000000 0.000000 )
b(2) = ( 0.000000 1.000000 0.000000 )
b(3) = ( 0.000000 0.000000 1.000000 )
PseudoPot. # 1 for O read from file:
/nas02/home/l/e/leshengl/espresso-5.0.2/pseudo/O.pbe-mt.UPF
MD5 check sum: a3e1ba1345403f1d3f3510e3a35dc3de
Pseudo is Norm-conserving, Zval = 6.0
Generated using Fritz-Haber code, data in Abinit PP tables
Using radial grid of 473 points, 3 beta functions with:
l(1) = 0
l(2) = 1
l(3) = 3
PseudoPot. # 2 for Ni read from file:
/nas02/home/l/e/leshengl/espresso-5.0.2/pseudo/Ni.pbe-sp-mt_gipaw.UPF
MD5 check sum: 6e96a17ccb10fab4445fdd5c98cb9b3c
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
PseudoPot. # 3 for Ni read from file:
/nas02/home/l/e/leshengl/espresso-5.0.2/pseudo/Ni.pbe-sp-mt_gipaw.UPF
MD5 check sum: 6e96a17ccb10fab4445fdd5c98cb9b3c
Pseudo is Norm-conserving, Zval = 18.0
Generated by new atomic code, or converted to UPF format
Using radial grid of 1195 points, 2 beta functions with:
l(1) = 0
l(2) = 1
atomic species valence mass pseudopotential
O 6.00 16.00000 O( 1.00)
Ni1 18.00 58.69000 Ni( 1.00)
Ni2 18.00 58.69000 Ni( 1.00)
Starting magnetic structure
atomic species magnetization
O 0.000
Ni1 0.500
Ni2 -0.500
6 Sym. Ops. (no inversion) found
Cartesian axes
site n. atom positions (alat units)
1 Ni1 tau( 1) = ( 0.0000000 0.0000000 0.0000000 )
2 Ni2 tau( 2) = ( 0.0000000 0.2500000 0.2500000 )
3 Ni2 tau( 3) = ( 0.2500000 0.0000000 0.2500000 )
4 Ni2 tau( 4) = ( 0.2500000 0.2500000 0.0000000 )
5 O tau( 5) = ( 0.2500000 0.2500000 0.2500000 )
6 O tau( 6) = ( 0.2500000 0.0000000 0.0000000 )
7 O tau( 7) = ( 0.0000000 0.2500000 0.0000000 )
8 O tau( 8) = ( 0.0000000 0.0000000 0.2500000 )
9 Ni2 tau( 9) = ( 0.5000000 0.0000000 0.0000000 )
10 Ni1 tau( 10) = ( 0.5000000 0.2500000 0.2500000 )
11 Ni1 tau( 11) = ( 0.7501200 0.0000000 0.2500000 )
12 Ni1 tau( 12) = ( 0.7501200 0.2500000 0.0000000 )
13 O tau( 13) = ( 0.7501200 0.2500000 0.2500000 )
14 O tau( 14) = ( 0.7501200 0.0000000 0.0000000 )
15 O tau( 15) = ( 0.5000000 0.2500000 0.0000000 )
16 O tau( 16) = ( 0.5000000 0.0000000 0.2500000 )
17 Ni2 tau( 17) = ( 0.0000000 0.5000000 0.0000000 )
18 Ni1 tau( 18) = ( 0.0000000 0.7501200 0.2500000 )
19 Ni1 tau( 19) = ( 0.2500000 0.5000000 0.2500000 )
20 Ni1 tau( 20) = ( 0.2500000 0.7501200 0.0000000 )
21 O tau( 21) = ( 0.2500000 0.7501200 0.2500000 )
22 O tau( 22) = ( 0.2500000 0.5000000 0.0000000 )
23 O tau( 23) = ( 0.0000000 0.7501200 0.0000000 )
24 O tau( 24) = ( 0.0000000 0.5000000 0.2500000 )
25 Ni1 tau( 25) = ( 0.5000000 0.5000000 0.0000000 )
26 Ni2 tau( 26) = ( 0.5000000 0.7501200 0.2500000 )
27 Ni2 tau( 27) = ( 0.7501200 0.5000000 0.2500000 )
28 Ni2 tau( 28) = ( 0.7501200 0.7501200 0.0000000 )
29 O tau( 29) = ( 0.7501200 0.7501200 0.2500000 )
30 O tau( 30) = ( 0.7501200 0.5000000 0.0000000 )
31 O tau( 31) = ( 0.5000000 0.7501200 0.0000000 )
32 O tau( 32) = ( 0.5000000 0.5000000 0.2500000 )
33 Ni2 tau( 33) = ( 0.0000000 0.0000000 0.5000000 )
34 Ni1 tau( 34) = ( 0.0000000 0.2500000 0.7501200 )
35 Ni1 tau( 35) = ( 0.2500000 0.0000000 0.7501200 )
36 Ni1 tau( 36) = ( 0.2500000 0.2500000 0.5000000 )
37 O tau( 37) = ( 0.2500000 0.2500000 0.7501200 )
38 O tau( 38) = ( 0.2500000 0.0000000 0.5000000 )
39 O tau( 39) = ( 0.0000000 0.2500000 0.5000000 )
40 O tau( 40) = ( 0.0000000 0.0000000 0.7501200 )
41 Ni1 tau( 41) = ( 0.5000000 0.0000000 0.5000000 )
42 Ni2 tau( 42) = ( 0.5000000 0.2500000 0.7501200 )
43 Ni2 tau( 43) = ( 0.7501200 0.0000000 0.7501200 )
44 Ni2 tau( 44) = ( 0.7501200 0.2500000 0.5000000 )
45 O tau( 45) = ( 0.7501200 0.2500000 0.7501200 )
46 O tau( 46) = ( 0.7501200 0.0000000 0.5000000 )
47 O tau( 47) = ( 0.5000000 0.2500000 0.5000000 )
48 O tau( 48) = ( 0.5000000 0.0000000 0.7501200 )
49 Ni1 tau( 49) = ( 0.0000000 0.5000000 0.5000000 )
50 Ni2 tau( 50) = ( 0.0000000 0.7501200 0.7501200 )
51 Ni2 tau( 51) = ( 0.2500000 0.5000000 0.7501200 )
52 Ni2 tau( 52) = ( 0.2500000 0.7501200 0.5000000 )
53 O tau( 53) = ( 0.2500000 0.7501200 0.7501200 )
54 O tau( 54) = ( 0.2500000 0.5000000 0.5000000 )
55 O tau( 55) = ( 0.0000000 0.7501200 0.5000000 )
56 O tau( 56) = ( 0.0000000 0.5000000 0.7501200 )
57 Ni2 tau( 57) = ( 0.5000000 0.5000000 0.5000000 )
58 Ni1 tau( 58) = ( 0.5000000 0.7501200 0.7501200 )
59 Ni1 tau( 59) = ( 0.7501200 0.5000000 0.7501200 )
60 Ni1 tau( 60) = ( 0.7501200 0.7501200 0.5000000 )
61 O tau( 61) = ( 0.7501200 0.7501200 0.7501200 )
62 O tau( 62) = ( 0.7501200 0.5000000 0.5000000 )
63 O tau( 63) = ( 0.5000000 0.7501200 0.5000000 )
64 O tau( 64) = ( 0.5000000 0.5000000 0.7501200 )
number of k points= 26 Fermi-Dirac smearing, width (Ry)= 0.0000
cart. coord. in units 2pi/alat
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250
k( 2) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0937500
k( 3) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.0468750
k( 4) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0937500
k( 5) = ( 0.0000000 0.2500000 -0.5000000), wk = 0.1875000
k( 6) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.0468750
k( 7) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 8) = ( 0.2500000 0.2500000 -0.5000000), wk = 0.0937500
k( 9) = ( 0.2500000 -0.5000000 -0.5000000), wk = 0.0937500
k( 10) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.0156250
k( 11) = ( -0.2500000 0.0000000 0.2500000), wk = 0.0937500
k( 12) = ( 0.2500000 -0.2500000 0.2500000), wk = 0.0937500
k( 13) = ( 0.2500000 -0.2500000 -0.5000000), wk = 0.0937500
k( 14) = ( 0.0000000 0.0000000 0.0000000), wk = 0.0156250
k( 15) = ( 0.0000000 0.0000000 0.2500000), wk = 0.0937500
k( 16) = ( 0.0000000 0.0000000 -0.5000000), wk = 0.0468750
k( 17) = ( 0.0000000 0.2500000 0.2500000), wk = 0.0937500
k( 18) = ( 0.0000000 0.2500000 -0.5000000), wk = 0.1875000
k( 19) = ( 0.0000000 -0.5000000 -0.5000000), wk = 0.0468750
k( 20) = ( 0.2500000 0.2500000 0.2500000), wk = 0.0312500
k( 21) = ( 0.2500000 0.2500000 -0.5000000), wk = 0.0937500
k( 22) = ( 0.2500000 -0.5000000 -0.5000000), wk = 0.0937500
k( 23) = ( -0.5000000 -0.5000000 -0.5000000), wk = 0.0156250
k( 24) = ( -0.2500000 0.0000000 0.2500000), wk = 0.0937500
k( 25) = ( 0.2500000 -0.2500000 0.2500000), wk = 0.0937500
k( 26) = ( 0.2500000 -0.2500000 -0.5000000), wk = 0.0937500
Dense grid: 86791 G-vectors FFT dimensions: ( 60, 60, 60)
Largest allocated arrays est. size (Mb) dimensions
Kohn-Sham Wavefunctions 1.17 Mb ( 178, 430)
NL pseudopotentials 1.30 Mb ( 178, 480)
Each V/rho on FFT grid 0.11 Mb ( 3600, 2)
Each G-vector array 0.01 Mb ( 1357)
G-vector shells 0.00 Mb ( 395)
Largest temporary arrays est. size (Mb) dimensions
Auxiliary wavefunctions 4.67 Mb ( 178, 1720)
Each subspace H/S matrix 1.81 Mb ( 344, 344)
Each <psi_i|beta_j> matrix 3.15 Mb ( 480, 430)
Arrays for rho mixing 0.44 Mb ( 3600, 8)
The initial density is read from file :
/netscr/leshengl/PDP/NiO/bulk/scf/pbe0.save/charge-density.dat
Starting wfc from file
***************
The following is the Fermi energy from first run:
the Fermi energy is 19.8843 ev
the Fermi energy is 19.4748 ev
the Fermi energy is 19.4581 ev
the Fermi energy is 19.4616 ev
the Fermi energy is 19.7605 ev
the Fermi energy is 19.4942 ev
the Fermi energy is 19.4951 ev
the Fermi energy is 19.4955 ev
the Fermi energy is 19.4957 ev
the Fermi energy is 19.4958 ev
Here are the fermi energy from the second restart run:
the Fermi energy is 19.8845 ev
the Fermi energy is 19.4748 ev
the Fermi energy is 19.4581 ev
the Fermi energy is 19.4616 ev
the Fermi energy is 19.7604 ev
the Fermi energy is 19.4944 ev
>From the fermi energy, it looks like the job is just start from the beginning. Also the accuracy looks the same for these two runs...
Any reply will be helpful, thank you very much.
Best wishes,
Lesheng Li
Ph.D student in Chemistry
University of North Carolina at Chapel Hill
United States
More information about the users
mailing list