[Pw_forum] orthogonality of phonon eigenvectors?
Sonu Kumar
1009ukumar at gmail.com
Thu Dec 29 10:41:02 CET 2011
Dear all QE users,
I am not getting the orthogonality of phonon eigenvectors
obtained in xx.dyn file. However normalization condition is satisfied.
For example:
1. for four atom unit cell, eigen vectors are:
omega( 1) = -0.330081 [THz] = -11.010398 [cm-1]
( -0.000126 0.000000 -0.494472 0.000000 0.000000 0.000000 )
( -0.000128 0.000000 -0.501752 0.000000 0.000000 0.000000 )
( -0.000128 0.000000 -0.501868 0.000000 0.000000 0.000000 )
( -0.000128 0.000000 -0.501868 0.000000 0.000000 0.000000 )
omega( 2) = -0.330081 [THz] = -11.010398 [cm-1]
( 0.494472 0.000000 -0.000126 0.000000 0.000000 0.000000 )
( 0.501752 0.000000 -0.000128 0.000000 0.000000 0.000000 )
( 0.501868 0.000000 -0.000128 0.000000 0.000000 0.000000 )
( 0.501868 0.000000 -0.000128 0.000000 0.000000 0.000000 )
omega( 3) = -0.293090 [THz] = -9.776500 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 0.499253 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.500310 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.500218 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.500218 0.000000 )
omega( 4) = 2.476743 [THz] = 82.615796 [cm-1]
( -0.506652 0.000000 -0.000002 0.000000 0.000000 0.000000 )
( 0.559568 0.000000 0.000002 0.000000 0.000000 0.000000 )
( 0.463782 0.000000 0.000002 0.000000 0.000000 0.000000 )
( 0.463782 0.000000 0.000002 0.000000 0.000000 0.000000 )
omega( 5) = 2.476743 [THz] = 82.615796 [cm-1]
( -0.000002 0.000000 0.506652 0.000000 0.000000 0.000000 )
( 0.000002 0.000000 -0.559568 0.000000 0.000000 0.000000 )
( 0.000002 0.000000 -0.463782 0.000000 0.000000 0.000000 )
( 0.000002 0.000000 -0.463782 0.000000 0.000000 0.000000 )
omega( 6) = 9.011016 [THz] = 300.577143 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 -0.562468 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.797241 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.154980 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.154980 0.000000 )
omega( 7) = 10.988751 [THz] = 366.547723 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.707107 0.000000 0.000001 0.000000 0.000000 0.000000 )
( -0.707107 0.000000 -0.000001 0.000000 0.000000 0.000000 )
omega( 8) = 10.988751 [THz] = 366.547724 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( -0.000001 0.000000 0.707107 0.000000 0.000000 0.000000 )
( 0.000001 0.000000 -0.707107 0.000000 0.000000 0.000000 )
omega( 9) = 11.334621 [THz] = 378.084770 [cm-1]
( 0.018232 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.283432 0.000000 0.000000 0.000000 0.000000 0.000000 )
( -0.677987 0.000000 -0.000001 0.000000 0.000000 0.000000 )
( -0.677987 0.000000 -0.000001 0.000000 0.000000 0.000000 )
omega(10) = 11.334621 [THz] = 378.084771 [cm-1]
( 0.000000 0.000000 -0.018232 0.000000 0.000000 0.000000 )
( 0.000000 0.000000 -0.283432 0.000000 0.000000 0.000000 )
( -0.000001 0.000000 0.677987 0.000000 0.000000 0.000000 )
( -0.000001 0.000000 0.677987 0.000000 0.000000 0.000000 )
omega(11) = 17.157192 [THz] = 572.306135 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 -0.097293 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 -0.168080 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.693644 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.693644 0.000000 )
omega(12) = 20.428646 [THz] = 681.430811 [cm-1]
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 -0.707107 0.000000 )
( 0.000000 0.000000 0.000000 0.000000 0.707107 0.000000 )
My Output:
mode# mode# sum of prod of modes
4 6 0.00000
5 7 0.00000
6 8 0.00000
7 9 0.00000
8 10 0.00000
9 11 0.00000
10 12 0.00000
12 5 0.00000
1 3 0.00000
2 4 0.49575 <-----why not zero.
Similarly :
mode# mode# sum of prod of modes
1 4 -0.00013
2 5 0.00013
3 6 0.27310 <---
4 7 0.00000
5 8 0.00000
6 9 0.00000
7 10 0.00000
8 11 0.00000
9 12 0.00000
10 1 -0.52929<--
11 2 0.00000
12 3 0.00000
However all modes follow the normalization conditon:
mode# sum of sqr of modes
1 1.00000
2 1.00000
3 1.00000
4 1.00000
5 1.00000
6 1.00000
7 1.00000
8 1.00000
9 1.00000
10 1.00000
11 1.00000
12 1.00000
Thank you !!
regards,
==========================================
Sonu Kumar
Phd Student,Physics Department
Indian Institute of Technology ,Delhi-110016, India
web:-http://www.iitd.ac.in/
==========================================
More information about the users
mailing list