[Pw_forum] IFC's
Katalin Gaal-Nagy
katalin.gaal-nagy at physik.uni-regensburg.de
Mon Sep 3 10:01:59 CEST 2007
Dear Ezad, dear Paolo,
well ... you can do it, with a trick.
If I understood correctly, you have the q points on a 3x3x3 grid and the q
points on a 4x4x4 grid. A grid containing both sets of q points is the
12x12x12 grid.
You can do the following: You calculate the force constants of the 4x4x4
grid and do a back Fourier transform and calculate the dynamical matrices
on a 12x12x12 grid. In this set of dynamical matrices, the ones
corresponding to the 4x4x4 grid are identical (up to numerical noise,
which is little). Then you take these 12x12x12 interpolated dynamical
matrices, throw away the interpolated ones corresponding to the 3x3x3 mesh
and put instead the 3x3x3 ones you have calculated with ph.x. You again
have a full set of dynamical matrices and you can calculate from these the
force constants, which correspond to a mixing of a 4x4x4 grid and a 3x3x3
grid. Note, they DON'T correspond to a 12x12x12 grid, since there are
still interpolated dynamical matrices left. With the resulting dynamical
matrices also no physical meaning like range of corresponding forces can
be connected any more.
The idea of this scheme can be found under condmat arXiv:0707.0384.
For the use of this scheme I modified the postprocessing routines
matdyn.f90 of ESPRESSO (I am not sure about the version, if should have
been espresso-3.1). I don't remember, if I was putting it in a nice,
commented shape (for sure tha Makefile not ... ). The main modification
was to tell the code to write out the dynamical matrices for all q in
star(q) in a way, that q2r.x can read it again. The modified routines and
a makefile are attached. I would apprechiate if you could test, if the
compilation is working.
However, you have to use the routines q2r.x and matdyn.x ...
The matdyn.x has now an additional flag and the input reads as
&input
asr='simple', amass(1)=28.086,
flfrc='si.q888.force',
flfrq='si.q16.16.16.freq.interpol',
dynmatout=.true.
/
349
.... list of k points created with kpoints.x ...
It creates (in this case) 349 files containing the interpolated dynamical
matrices dynint.$number where $number is the number of the q point given
in the list ...
Paolo, in case you want to include it to the ESPRESSO paackage and there
are problems, please let me know.
Good luck,
Katalin
On Sun, 2 Sep 2007, Paolo Giannozzi wrote:
>
> On Sep 2, 2007, at 10:25 , Ezad Shojaee wrote:
>
>> i want to know that are we able to use the 'IFC's calculated with
>> two grids' together? for example we calculate them by a 3*3*3 grid,
>> and then 4*4*4 , then use all of them in calculating C(q) for an
>> arbitrary point in the Brillouin zone?
>
> no, it is not: you can use only one specific grid. In principle one
> could
> start with a coarser grid and then add the missing points needed to have
> a denser grid, I think, but it would be a mess
>
> Paolo
> ---
> Paolo Giannozzi, Democritos and University of Udine, Italy
>
>
> _______________________________________________
> Pw_forum mailing list
> Pw_forum at pwscf.org
> http://www.democritos.it/mailman/listinfo/pw_forum
>
-------------- next part --------------
# Makefile for tools
include ../make.sys
PHOBJS = \
../PH/write_dyn_on_file.o \
../PH/star_q.o
#../PH/dyndia.o \
#../PW/cdiagh.o \
#../Modules/clocks.o
#../PH/dynmatrix.o \
#../PH/symdyn_munu.o \
#../PH/stop_ph.o \
#../PH/q2qstar_ph.o \
#../PH/write_ramtns.o \
#../PH/trntnsc.o \
#../PH/symdynph_gq.o \
#../PH/print_clock_ph.o \
#../PH/rotate_and_add_dyn.o \
#../PH/write_epsilon_and_zeu.o \
#../PH/deallocate_part.o
PWOBJS = \
../PW/checksym.o \
../PW/coset.o \
../PW/cryst_to_car.o \
../PW/cubicsym.o \
../PW/eqvect.o \
../PW/error_handler.o \
../PW/hexsym.o \
../PW/irrek.o \
../PW/inverse_s.o \
../PW/kpoint_grid.o \
../PW/mode_group.o \
../PW/multable.o \
../PW/noncol.o \
../PW/pwcom.o \
../PW/sgam_at.o \
../PW/sgam_at_mag.o \
../PW/sgam_ph.o \
../PW/sgama.o \
../PW/smallg_q.o \
../PW/trnvecc.o \
../PW/w0gauss.o \
../PW/wsweight.o
MODULES = \
../Modules/basic_algebra_routines.o \
../Modules/cell_base.o \
../Modules/constants.o \
../Modules/control_flags.o \
../Modules/io_global.o \
../Modules/io_files.o \
../Modules/ions_base.o \
../Modules/fft_types.o \
../Modules/fft_scalar.o \
../Modules/kind.o \
../Modules/mp.o \
../Modules/mp_global.o \
../Modules/parallel_include.o \
../Modules/parameters.o \
../Modules/parser.o \
../Modules/path_formats.o \
../Modules/printout_base.o \
../Modules/random_numbers.o \
../Modules/recvec.o \
../Modules/splinelib.o \
../Modules/timestep.o \
../Modules/uspp.o
TLDEPS= bindir mods libs pw
all : tldeps dynmat.x kpoints.x matdyn.x \
q2r.x q2r.old.x
# path_int.x pwi2xsf.x q2r.x q2r.old.x bands_FS.x kvecs_FS.x metadyn_pp.x
dynmat.x : dynmat.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS)
$(MPIF90) $(LDFLAGS) -o $@ \
dynmat.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS) $(LIBS)
- ( cd ../bin ; ln -fs ../pwtools/$@ . )
kpoints.x : kpoints.o $(PWOBJS) $(MODULES) $(LIBOBJS)
$(MPIF90) $(LDFLAGS) -o $@ \
kpoints.o $(PWOBJS) $(MODULES) $(LIBOBJS) $(LIBS)
- ( cd ../bin ; ln -fs ../pwtools/$@ . )
matdyn.x : matdyn.o rigid.o writemodes_dyn.o $(PWOBJS) $(PHOBJS) $(MODULES) $(LIBOBJS)
$(MPIF90) $(LDFLAGS) -o $@ \
matdyn.o rigid.o writemodes_dyn.o $(PWOBJS) $(PHOBJS) $(MODULES) $(LIBOBJS) $(LIBS)
- ( cd ../bin ; ln -fs ../pwtools/$@ . )
q2r.x : q2r.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS)
$(MPIF90) $(LDFLAGS) -o $@ \
q2r.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS) $(LIBS)
- ( cd ../bin ; ln -fs ../pwtools/$@ . )
q2r.old.x : q2r.pw.2.0.2.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS)
$(MPIF90) $(LDFLAGS) -o $@ \
q2r.pw.2.0.2.o rigid.o $(PWOBJS) $(MODULES) $(LIBOBJS) $(LIBS)
- ( cd ../bin ; ln -fs ../pwtools/$@ . )
tldeps:
test -n "$(TLDEPS)" && ( cd .. ; $(MAKE) $(MFLAGS) $(TLDEPS) || exit 1) || :
clean :
- /bin/rm -f pwi2xsf pwi2xsf_old *.x *.o *~ *.F90 *.mod *.d *.i work.pc
include make.depend
-------------- next part --------------
! Copyright (C) 2001-2004 PWSCF group
! This file is distributed under the terms of the
! GNU General Public License. See the file `License'
! in the root directory of the present distribution,
! or http://www.gnu.org/copyleft/gpl.txt .
!
!
! Modifications Katalin Gaal-Nagy (search KG) November/December 2006
! Adding an input parameter dynmatout = .true./.false
! for writing out the dynamical matrix file for a given q_in for
! all q in star(q_in). This file should be readable from dynmat.x
! The files with the dynamical matrices are called dynint.#q
! where #q is the number of the q point in the input list.
! For having all informations (c/a, etc) which are necessary for dynmat.x,
! also the readfc routine in this
! file has been modificated in order to return the corresponding information
! by adding celldm (it was already read, just not returned to the main).
!
#include "f_defs.h"
!
Module ifconstants
!
! All variables read from file that need dynamical allocation
!
USE kinds, ONLY: DP
REAL(DP), ALLOCATABLE :: frc(:,:,:,:,:,:,:), tau_blk(:,:), zeu(:,:,:)
! frc : interatomic force constants in real space
! tau_blk : atomic positions for the original cell
! zeu : effective charges for the original cell
INTEGER, ALLOCATABLE :: ityp_blk(:)
! ityp_blk : atomic types for each atom of the original cell
!
end Module ifconstants
!
!---------------------------------------------------------------------
PROGRAM matdyn
!-----------------------------------------------------------------------
! this program calculates the phonon frequencies for a list of generic
! q vectors starting from the interatomic force constants generated
! from the dynamical matrices as written by DFPT phonon code through
! the companion program q2r
!
! matdyn can generate a supercell of the original cell for mass
! approximation calculation. If supercell data are not specified
! in input, the unit cell, lattice vectors, atom types and positions
! are read from the force constant file
!
! Input cards: namelist &input
! flfrc file produced by q2r containing force constants (needed)
! asr (character) indicates the type of Acoustic Sum Rule imposed
! - 'no': no Acoustic Sum Rules imposed (default)
! - 'simple': previous implementation of the asr used
! (3 translational asr imposed by correction of
! the diagonal elements of the force constants matrix)
! - 'crystal': 3 translational asr imposed by optimized
! correction of the force constants (projection).
! - 'one-dim': 3 translational asr + 1 rotational asr
! imposed by optimized correction of the force constants
! (the rotation axis is the direction of periodicity;
! it will work only if this axis considered is one of
! the cartesian axis).
! - 'zero-dim': 3 translational asr + 3 rotational asr
! imposed by optimized correction of the force constants
! Note that in certain cases, not all the rotational asr
! can be applied (e.g. if there are only 2 atoms in a
! molecule or if all the atoms are aligned, etc.).
! In these cases the supplementary asr are cancelled
! during the orthonormalization procedure (see below).
! dos if .true. calculate phonon Density of States (DOS)
! using tetrahedra and a uniform q-point grid (see below)
! NB: may not work properly in noncubic materials
! if .false. calculate phonon bands from the list of q-points
! supplied in input
! nk1,nk2,nk3 uniform q-point grid for DOS calculation (includes q=0)
! deltaE energy step, in cm^(-1), for DOS calculation: from min
! to max phonon energy (default: 1 cm^(-1) if ndos is
! not specified)
! ndos number of energy steps for DOS calculations
! (no default: calculated from deltaE if not specified)
! fldos output file for dos (default: 'matdyn.dos')
! the dos is in states/cm(-1) plotted vs omega in cm(-1)
! and is normalised to 3*nat, i.e. the number of phonons
! flfrq output file for frequencies (default: 'matdyn.freq')
! flvec output file for normal modes (default: 'matdyn.modes')
! at supercell lattice vectors - must form a superlattice of the
! original lattice
! l1,l2,l3 supercell lattice vectors are original cell vectors
! multiplied by l1, l2, l3 respectively
! ntyp number of atom types in the supercell
! amass masses of atoms in the supercell
! readtau read atomic positions of the supercell from input
! (used to specify different masses)
! fltau write atomic positions of the supercell to file "fltau"
! (default: fltau=' ', do not write)
!
! if (readtau) atom types and positions in the supercell follow:
! (tau(i,na),i=1,3), ityp(na)
! Then, if (.not.dos) :
! nq number of q-points
! (q(i,n), i=1,3) nq q-points in 2pi/a units
! If q = 0, the direction qhat (q=>0) for the non-analytic part
! is extracted from the sequence of q-points as follows:
! qhat = q(n) - q(n-1) or qhat = q(n) - q(n+1)
! depending on which one is available and nonzero.
! For low-symmetry crystals, specify twice q = 0 in the list
! if you want to have q = 0 results for two different directions
!
USE kinds, ONLY : DP
USE mp, ONLY : mp_start, mp_env, mp_end, mp_barrier
USE mp_global, ONLY : nproc, mpime, mp_global_start
USE ifconstants
!
IMPLICIT NONE
!
INTEGER :: gid
!
! variables *_blk refer to the original cell, other variables
! to the (super)cell (which may coincide with the original cell)
!
INTEGER:: nax, nax_blk
INTEGER, PARAMETER:: ntypx=10, nrwsx=200
REAL(DP), PARAMETER :: eps=1.0e-6, rydcm1 = 13.6058*8065.5, &
amconv = 1.66042e-24/9.1095e-28*0.5
INTEGER :: nr1, nr2, nr3, nsc, nk1, nk2, nk3, ntetra, ibrav
CHARACTER(LEN=256) :: flfrc, flfrq, flvec, fltau, fldos
CHARACTER(LEN=10) :: asr
CHARACTER(LEN=9) :: symm_type
LOGICAL :: dos, has_zstar
COMPLEX(DP), ALLOCATABLE :: dyn(:,:,:,:), dyn_blk(:,:,:,:)
COMPLEX(DP), ALLOCATABLE :: z(:,:)
REAL(DP), ALLOCATABLE:: tau(:,:), q(:,:), w2(:,:), freq(:,:)
INTEGER, ALLOCATABLE:: tetra(:,:), ityp(:), itau_blk(:)
REAL(DP) :: at(3,3), bg(3,3), omega, alat, &! cell parameters and volume
at_blk(3,3), bg_blk(3,3), &! original cell
omega_blk, &! original cell volume
epsil(3,3), &! dielectric tensor
amass(ntypx), &! atomic masses
amass_blk(ntypx), &! original atomic masses
atws(3,3), &! lattice vector for WS initialization
rws(0:3,nrwsx) ! nearest neighbor list, rws(0,*) = norm^2
!
INTEGER :: nat, nat_blk, ntyp, ntyp_blk, &
l1, l2, l3, &! supercell dimensions
nrws ! number of nearest neighbor
!
LOGICAL :: readtau, la2F
!
REAL(DP) :: qhat(3), qh, DeltaE, Emin, Emax, E, DOSofE(1)
INTEGER :: n, i, j, it, nq, nqx, na, nb, ndos, iout
!
! KG: Additional parameters:
!
! for star_q
!
CHARACTER(LEN=3) :: atm(ntypx)
! list of vectors in the star of q
logical :: noinv
INTEGER, PARAMETER :: natmax=100
integer :: nsym, s (3, 3, 48), invs (48), irt (48, natmax), isq (48), imq, modenum
real(DP) :: rtau (3, 48, natmax), sxq (3, 48)
!
! for doing the extra loop
!
LOGICAL :: dynmatout
INTEGER :: nn, nnn ! running index for the q in the star
INTEGER :: nnq ! degeneracy of the star of q
!
! for the dynmat_interpol file
!
INTEGER :: fildyn_lent
CHARACTER(LEN=8) :: fildyn_int, fildyn_out
CHARACTER :: fildyn_d(0:9)
REAL(DP) :: celldm(6)
data fildyn_d/'0','1','2','3','4','5','6','7','8','9'/
INTEGER :: ios, iudyn
CHARACTER(LEN=30) :: fildyn
! End KG
! KG: old namelist
! NAMELIST /input/ flfrc, amass, asr, flfrq, flvec, at, dos, &
! & fldos, nk1, nk2, nk3, l1, l2, l3, ntyp, readtau, fltau, &
! la2F, ndos
! KG: new namelist
NAMELIST /input/ flfrc, amass, asr, flfrq, flvec, at, dos, &
& fldos, nk1, nk2, nk3, l1, l2, l3, ntyp, readtau, fltau, &
la2F, ndos, dynmatout
!
!
CALL mp_start()
!
CALL mp_env( nproc, mpime, gid )
!
IF ( mpime == 0 ) THEN
!
! ... all calculations are done by the first cpu
!
! set namelist default
!
dos = .FALSE.
deltaE = 1.0
ndos = 1
nk1 = 0
nk2 = 0
nk3 = 0
asr ='no'
readtau=.FALSE.
flfrc=' '
fldos='matdyn.dos'
flfrq='matdyn.freq'
flvec='matdyn.modes'
fltau=' '
amass(:) =0.d0
amass_blk(:) =0.d0
at(:,:) = 0.d0
ntyp = 0
l1=1
l2=1
l3=1
la2F=.false.
dos=.false.
dynmatout=.false.
!
CALL input_from_file ( )
!
READ (5,input)
!
! convert masses to atomic units
!
amass(:) = amass(:) * amconv
!
! read force constants
!
ntyp_blk = ntypx ! avoids fake out-of-bound error
CALL readfc ( flfrc, nr1, nr2, nr3, epsil, nat_blk, &
ibrav, symm_type, alat, celldm, at_blk, ntyp_blk, &
amass_blk, omega_blk, has_zstar, atm)
!
CALL recips ( at_blk(1,1),at_blk(1,2),at_blk(1,3), &
bg_blk(1,1),bg_blk(1,2),bg_blk(1,3) )
!
! set up (super)cell
!
if (ntyp < 0) then
call errore ('matdyn','wrong ntyp ', abs(ntyp))
else if (ntyp == 0) then
ntyp=ntyp_blk
end if
!
! masses (for mass approximation)
!
DO it=1,ntyp
IF (amass(it) < 0.d0) THEN
CALL errore ('matdyn','wrong mass in the namelist',it)
ELSE IF (amass(it) == 0.d0) THEN
IF (it.LE.ntyp_blk) THEN
WRITE (*,'(a,i3,a,a)') ' mass for atomic type ',it, &
& ' not given; uses mass from file ',flfrc
amass(it) = amass_blk(it)
ELSE
CALL errore ('matdyn','missing mass in the namelist',it)
END IF
END IF
END DO
!
! lattice vectors
!
IF (SUM(ABS(at(:,:))) == 0.d0) THEN
IF (l1.LE.0 .OR. l2.LE.0 .OR. l3.LE.0) CALL &
& errore ('matdyn',' wrong l1,l2 or l3',1)
at(:,1) = at_blk(:,1)*DBLE(l1)
at(:,2) = at_blk(:,2)*DBLE(l2)
at(:,3) = at_blk(:,3)*DBLE(l3)
END IF
!
CALL check_at(at,bg_blk,alat,omega)
!
! the supercell contains "nsc" times the original unit cell
!
nsc = NINT(omega/omega_blk)
IF (ABS(omega/omega_blk-nsc) > eps) &
CALL errore ('matdyn', 'volume ratio not integer', 1)
!
! read/generate atomic positions of the (super)cell
!
nat = nat_blk * nsc
nax = nat
!!!
nax_blk = nat_blk
!!!
ALLOCATE ( tau (3, nat), ityp(nat), itau_blk(nat_blk) )
!
IF (readtau) THEN
CALL read_tau &
(nat, nat_blk, ntyp, bg_blk, tau, tau_blk, ityp, itau_blk)
ELSE
CALL set_tau &
(nat, nat_blk, at, at_blk, tau, tau_blk, ityp, ityp_blk, itau_blk)
ENDIF
!
IF (fltau.NE.' ') CALL write_tau (fltau, nat, tau, ityp)
!
! reciprocal lattice vectors
!
CALL recips (at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3))
!
! build the WS cell corresponding to the force constant grid
!
atws(:,1) = at_blk(:,1)*DBLE(nr1)
atws(:,2) = at_blk(:,2)*DBLE(nr2)
atws(:,3) = at_blk(:,3)*DBLE(nr3)
! initialize WS r-vectors
CALL wsinit(rws,nrwsx,nrws,atws)
!
! end of (super)cell setup
!
IF (dos) THEN
IF (nk1 < 1 .OR. nk2 < 1 .OR. nk3 < 1) &
CALL errore ('matdyn','specify correct q-point grid!',1)
ntetra = 6 * nk1 * nk2 * nk3
nqx = nk1*nk2*nk3
ALLOCATE ( tetra(4,ntetra), q(3,nqx) )
CALL gen_qpoints (ibrav, at, bg, nat, tau, ityp, nk1, nk2, nk3, &
symm_type, ntetra, nqx, nq, q, tetra)
ELSE
!
! read q-point list
!
READ (5,*) nq
ALLOCATE ( q(3,nq) )
DO n = 1,nq
READ (5,*) (q(i,n),i=1,3)
END DO
END IF
!
IF (asr /= 'no') THEN
CALL set_asr (asr, nr1, nr2, nr3, frc, zeu, &
nat_blk, ibrav, tau_blk)
END IF
!
IF (flvec.EQ.' ') THEN
iout=6
ELSE
iout=4
OPEN (unit=iout,file=flvec,status='unknown',form='formatted')
END IF
ALLOCATE ( dyn(3,3,nat,nat), dyn_blk(3,3,nat_blk,nat_blk) )
ALLOCATE ( z(3*nat,3*nat), w2(3*nat,nq) )
if(la2F) open(300,file='dyna2F',status='unknown')
!
! KG: Modifications here: In the case of dynmatout=.true there is an additional
! loop over the q in star(q_in)
!
DO n=1, nq
dyn(:,:,:,:) = (0.d0, 0.d0)
CALL setupmat (q(1,n), dyn, nat, at, bg, tau, itau_blk, nsc, alat, &
dyn_blk, nat_blk, at_blk, bg_blk, tau_blk, omega_blk, &
epsil, zeu, frc, nr1,nr2,nr3, has_zstar, rws, nrws)
IF (q(1,n)==0.d0 .AND. q(2,n)==0.d0 .AND. q(3,n)==0.d0) THEN
!
! q = 0 : we need the direction q => 0 for the non-analytic part
!
IF ( n == 1 ) THEN
! if q is the first point in the list
IF ( nq > 1 ) THEN
! one more point
qhat(:) = q(:,n) - q(:,n+1)
ELSE
! no more points
qhat(:) = 0.d0
END IF
ELSE IF ( n > 1 ) THEN
! if q is not the first point in the list
IF ( q(1,n-1)==0.d0 .AND. &
q(2,n-1)==0.d0 .AND. &
q(3,n-1)==0.d0 .AND. n < nq ) THEN
! if the preceding q is also 0 :
qhat(:) = q(:,n) - q(:,n+1)
ELSE
! if the preceding q is npt 0 :
qhat(:) = q(:,n) - q(:,n-1)
END IF
END IF
qh = SQRT(qhat(1)**2+qhat(2)**2+qhat(3)**2)
! write(*,*) ' qh, has_zstar ',qh, has_zstar
IF (qh /= 0.d0) qhat(:) = qhat(:) / qh
IF (qh /= 0.d0 .AND. .NOT. has_zstar) CALL infomsg &
('matdyn','Z* not found in file '//TRIM(flfrc)// &
', TO-LO splitting at q=0 will be absent!', -1)
!
CALL nonanal (nat, nat_blk, itau_blk, epsil, qhat, zeu, omega, dyn)
!
END IF
!
CALL dyndiag(nat,ntyp,amass,ityp,dyn,w2(1,n),z)
!
if(la2F) then
write(300,*) n
do na=1,3*nat
write(300,*) (z(na,nb),nb=1,3*nat)
end do ! na
endif
!
CALL writemodes(nax,nat,q(1,n),w2(1,n),z,iout)
!
! KG: here the additional loop, creating an output-file for each q_in, etc
!
! KG: Here starts the calculation of the dynamical matrices for all q in the star(q)
! and its writeout to a file
!
IF (dynmatout) THEN
! Open file and write the header
!
iudyn = 26
!
! Creating filename with extention of the number of the point
!
fildyn_lent = int(alog10(real(n)))+1
write(fildyn_int,'(i'//fildyn_d(fildyn_lent)//')') n
read(fildyn_int,'(a'//fildyn_d(fildyn_lent)//')') fildyn_out
fildyn = 'dynint.'//fildyn_out
!
OPEN (unit=iudyn, file=fildyn, status='unknown', err=100, iostat=ios)
write (iudyn, '("Dynamical matrix file")')
write (iudyn, '(a)') ' '
write (iudyn, '(i3,i5,i3,6f11.7)') ntyp, nat, ibrav, celldm
write(*,*) alat
if (ibrav==0) then
write (iudyn,'(a)') symm_type
write (iudyn,'(2x,3f15.9)') ((at(i,j),i=1,3),j=1,3)
end if
do it = 1, ntyp
write (iudyn, * ) it, ' ''', atm (it) , ' '' ', amass (it)
enddo
do na = 1, nat
write (iudyn, '(2i5,3f15.7)') na, ityp (na) , (tau (j, na) , j = 1, 3)
enddo
!
! Calculate the star of the q given by q(1,n)
!
! KG: email Paolo Giannozzi, pw_forum, Thu, 23 Nov 2006 10:22:23 +0100
! all modes are calculated:
!
modenum=0
noinv=.false.
!
sxq=0.0
call star_q (q(1,n),at, bg, ibrav, symm_type, nat, tau, ityp, nr1, &
nr2, nr3, &
nsym, s, invs, irt, &
rtau, nnq, sxq, isq, imq,&
noinv, modenum)
write(*,*) nnq
!
! Loop over q in star(q_in)
!
Do nn=1,nnq
dyn(:,:,:,:) = (0.d0, 0.d0)
CALL setupmat (sxq(1,nn), dyn, nat, at, bg, tau, itau_blk, nsc, alat, &
dyn_blk, nat_blk, at_blk, bg_blk, tau_blk, omega_blk, &
epsil, zeu, frc, nr1,nr2,nr3, has_zstar, rws, nrws)
IF (q(1,nn)==0.d0 .AND. q(2,nn)==0.d0 .AND. q(3,nn)==0.d0) THEN
!
! q = 0 : we need the direction q => 0 for the non-analytic part
!
IF ( nn == 1 ) THEN
! if q is the first point in the list
IF ( nnq > 1 ) THEN
! one more point
qhat(:) = q(:,nn) - q(:,nn+1)
ELSE
! no more points
qhat(:) = 0.d0
END IF
ELSE IF ( nn > 1 ) THEN
! if q is not the first point in the list
IF ( q(1,nn-1)==0.d0 .AND. &
q(2,nn-1)==0.d0 .AND. &
q(3,nn-1)==0.d0 .AND. nn < nnq ) THEN
! if the preceding q is also 0 :
qhat(:) = q(:,nn) - q(:,nn+1)
ELSE
! if the preceding q is npt 0 :
qhat(:) = q(:,nn) - q(:,nn-1)
END IF
END IF
qh = SQRT(qhat(1)**2+qhat(2)**2+qhat(3)**2)
! write(*,*) ' qh, has_zstar ',qh, has_zstar
IF (qh /= 0.d0) qhat(:) = qhat(:) / qh
IF (qh /= 0.d0 .AND. .NOT. has_zstar) CALL infomsg &
('matdyn','Z* not found in file '//TRIM(flfrc)// &
', TO-LO splitting at q=0 will be absent!', -1)
!
CALL nonanal (nat, nat_blk, itau_blk, epsil, qhat, zeu, omega, dyn)
!
END IF
!
call write_dyn_on_file (sxq(1, nn), dyn, nat, iudyn)
!
END DO ! nnq
write(iudyn,*) ' '
CALL writemodes(nax,nat,q(1,n),w2(1,n),z,iudyn)
!
! close the file with the interpolated dynamical matrices
!
close (iudyn)
!
ENDIF
!
END DO !nq
!
! KG: End of modifications
!
!
if(la2F) close(300)
!
IF(iout .NE. 6) CLOSE(unit=iout)
!
ALLOCATE (freq(3*nat, nq))
DO n=1,nq
! freq(i,n) = frequencies in cm^(-1), with negative sign if omega^2 is negative
DO i=1,3*nat
freq(i,n)= SQRT(ABS(w2(i,n))) * rydcm1
IF (w2(i,n) < 0.0) freq(i,n) = -freq(i,n)
END DO
END DO
!
IF(flfrq.NE.' ') THEN
OPEN (unit=2,file=flfrq ,status='unknown',form='formatted')
WRITE(2, '(" &plot nbnd=",i4,", nks=",i4," /")') 3*nat, nq
DO n=1, nq
WRITE(2, '(10x,3f10.6)') q(1,n), q(2,n), q(3,n)
WRITE(2,'(6f10.4)') (freq(i,n), i=1,3*nat)
END DO
CLOSE(unit=2)
END IF
!
!
IF (dos) THEN
Emin = 0.0
Emax = 0.0
DO n=1,nq
DO i=1, 3*nat
Emin = MIN (Emin, freq(i,n))
Emax = MAX (Emax, freq(i,n))
END DO
END DO
!
if (ndos > 1) then
DeltaE = (Emax - Emin)/(ndos-1)
else
ndos = NINT ( (Emax - Emin) / DeltaE + 1.51 )
end if
OPEN (unit=2,file=fldos,status='unknown',form='formatted')
DO n= 1, ndos
E = Emin + (n - 1) * DeltaE
CALL dos_t(freq, 1, 3*nat, nq, ntetra, tetra, E, DOSofE)
!
! The factor 0.5 corrects for the factor 2 in dos_t,
! that accounts for the spin in the electron DOS.
!
!WRITE (2, '(F15.10,F15.2,F15.6,F20.5)') &
! E, E*rydcm1, E*rydTHz, 0.5d0*DOSofE(1)
WRITE (2, '(E12.4,E12.4)') E, 0.5d0*DOSofE(1)
END DO
CLOSE(unit=2)
END IF !dos
DEALLOCATE (z, w2, dyn, dyn_blk)
!
! for a2F
!
IF(la2F) THEN
!
! convert frequencies to Ry
!
freq(:,:)= freq(:,:) / rydcm1
Emin = Emin / rydcm1
DeltaE=DeltaE/ rydcm1
!
call a2Fdos (nat, nq, nr1, nr2, nr3, ibrav, at, bg, tau, alat, &
nsc, nat_blk, at_blk, bg_blk, itau_blk, omega_blk, &
rws, nrws, dos, Emin, DeltaE, ndos, &
ntetra, tetra, asr, q, freq)
END IF
DEALLOCATE ( freq)
!
END IF
!
CALL mp_barrier()
!
CALL mp_end()
!
100 CALL errore ('openfilq', 'opening file'//fildyn, ABS (ios) )
REWIND (iudyn)
STOP
!
END PROGRAM matdyn
!
!-----------------------------------------------------------------------
SUBROUTINE readfc ( flfrc, nr1, nr2, nr3, epsil, nat, &
ibrav, symm_type, alat, celldm, at, ntyp, amass, omega, has_zstar, atm )
!-----------------------------------------------------------------------
!
! Modification K.GN:
! return also celldm, since it is required for the dynmat files
!
USE kinds, ONLY : DP
USE ifconstants,ONLY : tau => tau_blk, ityp => ityp_blk, frc, zeu
!
IMPLICIT NONE
! I/O variable
CHARACTER(LEN=256) flfrc
INTEGER ibrav, nr1,nr2,nr3,nat, ntyp
REAL(DP) alat, at(3,3), epsil(3,3)
LOGICAL has_zstar
! local variables
INTEGER i, j, na, nb, m1,m2,m3
INTEGER ibid, jbid, nabid, nbbid, m1bid,m2bid,m3bid
REAL(DP) amass(ntyp), amass_from_file, celldm(6), omega
INTEGER nt
CHARACTER(LEN=3) atm(ntyp)
CHARACTER(LEN=9) symm_type
!
!
OPEN (unit=1,file=flfrc,status='old',form='formatted')
!
! read cell data
!
READ(1,*) ntyp,nat,ibrav,(celldm(i),i=1,6)
if (ibrav==0) then
read(1,'(a)') symm_type
read(1,*) ((at(i,j),i=1,3),j=1,3)
end if
!
CALL latgen(ibrav,celldm,at(1,1),at(1,2),at(1,3),omega)
alat = celldm(1)
at = at / alat ! bring at in units of alat
CALL volume(alat,at(1,1),at(1,2),at(1,3),omega)
!
! read atomic types, positions and masses
!
DO nt = 1,ntyp
READ(1,*) i,atm(nt),amass_from_file
IF (i.NE.nt) CALL errore ('readfc','wrong data read',nt)
IF (amass(nt).EQ.0.d0) THEN
amass(nt) = amass_from_file
ELSE
WRITE(*,*) 'for atomic type',nt,' mass from file not used'
END IF
END DO
!
ALLOCATE (tau(3,nat), ityp(nat), zeu(3,3,nat))
!
DO na=1,nat
READ(1,*) i,ityp(na),(tau(j,na),j=1,3)
IF (i.NE.na) CALL errore ('readfc','wrong data read',na)
END DO
!
! read macroscopic variable
!
READ (1,*) has_zstar
IF (has_zstar) THEN
READ(1,*) ((epsil(i,j),j=1,3),i=1,3)
DO na=1,nat
READ(1,*)
READ(1,*) ((zeu(i,j,na),j=1,3),i=1,3)
END DO
ELSE
zeu (:,:,:) = 0.d0
epsil(:,:) = 0.d0
END IF
!
READ (1,*) nr1,nr2,nr3
!
! read real-space interatomic force constants
!
ALLOCATE ( frc(nr1,nr2,nr3,3,3,nat,nat) )
frc(:,:,:,:,:,:,:) = 0.d0
DO i=1,3
DO j=1,3
DO na=1,nat
DO nb=1,nat
READ (1,*) ibid, jbid, nabid, nbbid
IF(i .NE.ibid .OR. j .NE.jbid .OR. &
na.NE.nabid .OR. nb.NE.nbbid) &
CALL errore ('readfc','error in reading',1)
READ (1,*) (((m1bid, m2bid, m3bid, &
frc(m1,m2,m3,i,j,na,nb), &
m1=1,nr1),m2=1,nr2),m3=1,nr3)
END DO
END DO
END DO
END DO
!
CLOSE(unit=1)
!
RETURN
END SUBROUTINE readfc
!
!-----------------------------------------------------------------------
SUBROUTINE frc_blk(dyn,q,tau,nat,nr1,nr2,nr3,frc,at,bg,rws,nrws)
!-----------------------------------------------------------------------
! calculates the dynamical matrix at q from the (short-range part of the)
! force constants
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER nr1, nr2, nr3, nat, n1, n2, n3, &
ipol, jpol, na, nb, m1, m2, m3, nint, i,j, nrws
COMPLEX(DP) dyn(3,3,nat,nat)
REAL(DP) frc(nr1,nr2,nr3,3,3,nat,nat), tau(3,nat), q(3), arg, &
at(3,3), bg(3,3), r(3), weight, r_ws(3), &
total_weight, rws(0:3,nrws)
REAL(DP), PARAMETER:: tpi = 2.0*3.14159265358979d0
REAL(DP), EXTERNAL :: wsweight
!
DO na=1, nat
DO nb=1, nat
total_weight=0.0d0
DO n1=-2*nr1,2*nr1
DO n2=-2*nr2,2*nr2
DO n3=-2*nr3,2*nr3
!
! SUM OVER R VECTORS IN THE SUPERCELL - VERY VERY SAFE RANGE!
!
DO i=1, 3
r(i) = n1*at(i,1)+n2*at(i,2)+n3*at(i,3)
r_ws(i) = r(i) + tau(i,na)-tau(i,nb)
END DO
weight = wsweight(r_ws,rws,nrws)
IF (weight .GT. 0.0) THEN
!
! FIND THE VECTOR CORRESPONDING TO R IN THE ORIGINAL CELL
!
m1 = MOD(n1+1,nr1)
IF(m1.LE.0) m1=m1+nr1
m2 = MOD(n2+1,nr2)
IF(m2.LE.0) m2=m2+nr2
m3 = MOD(n3+1,nr3)
IF(m3.LE.0) m3=m3+nr3
!
! FOURIER TRANSFORM
!
arg = tpi*(q(1)*r(1) + q(2)*r(2) + q(3)*r(3))
DO ipol=1, 3
DO jpol=1, 3
dyn(ipol,jpol,na,nb) = &
dyn(ipol,jpol,na,nb) + &
frc(m1,m2,m3,ipol,jpol,na,nb) &
*CMPLX(COS(arg),-SIN(arg))*weight
END DO
END DO
END IF
total_weight=total_weight + weight
END DO
END DO
END DO
IF (ABS(total_weight-nr1*nr2*nr3).GT.1.0d-8) THEN
WRITE(*,*) total_weight
CALL errore ('frc_blk','wrong total_weight',1)
END IF
END DO
END DO
!
RETURN
END SUBROUTINE frc_blk
!
!-----------------------------------------------------------------------
SUBROUTINE setupmat (q,dyn,nat,at,bg,tau,itau_blk,nsc,alat, &
& dyn_blk,nat_blk,at_blk,bg_blk,tau_blk,omega_blk, &
& epsil,zeu,frc,nr1,nr2,nr3,has_zstar,rws,nrws)
!-----------------------------------------------------------------------
! compute the dynamical matrix (the analytic part only)
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
REAL(DP), PARAMETER :: tpi=2.d0*3.14159265358979d0
!
! I/O variables
!
INTEGER:: nr1, nr2, nr3, nat, nat_blk, nsc, nrws, itau_blk(nat)
REAL(DP) :: q(3), tau(3,nat), at(3,3), bg(3,3), alat, &
epsil(3,3), zeu(3,3,nat_blk), rws(0:3,nrws), &
frc(nr1,nr2,nr3,3,3,nat_blk,nat_blk)
REAL(DP) :: tau_blk(3,nat_blk), at_blk(3,3), bg_blk(3,3), omega_blk
COMPLEX(DP) dyn_blk(3,3,nat_blk,nat_blk)
COMPLEX(DP) :: dyn(3,3,nat,nat)
LOGICAL has_zstar
!
! local variables
!
REAL(DP) :: arg
COMPLEX(DP) :: cfac(nat)
INTEGER :: i,j,k, na,nb, na_blk, nb_blk, iq
REAL(DP) qp(3), qbid(3,nsc) ! automatic array
!
!
CALL q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!
DO iq=1,nsc
!
DO k=1,3
qp(k)= q(k) + qbid(k,iq)
END DO
!
dyn_blk(:,:,:,:) = (0.d0,0.d0)
CALL frc_blk (dyn_blk,qp,tau_blk,nat_blk, &
& nr1,nr2,nr3,frc,at_blk,bg_blk,rws,nrws)
IF (has_zstar) &
CALL rgd_blk(nr1,nr2,nr3,nat_blk,dyn_blk,qp,tau_blk, &
epsil,zeu,bg_blk,omega_blk,+1.d0)
!
DO na=1,nat
na_blk = itau_blk(na)
DO nb=1,nat
nb_blk = itau_blk(nb)
!
arg=tpi* ( qp(1) * ( (tau(1,na)-tau_blk(1,na_blk)) - &
(tau(1,nb)-tau_blk(1,nb_blk)) ) + &
qp(2) * ( (tau(2,na)-tau_blk(2,na_blk)) - &
(tau(2,nb)-tau_blk(2,nb_blk)) ) + &
qp(3) * ( (tau(3,na)-tau_blk(3,na_blk)) - &
(tau(3,nb)-tau_blk(3,nb_blk)) ) )
!
cfac(nb) = CMPLX(COS(arg),SIN(arg))/nsc
!
END DO ! nb
!
DO i=1,3
DO j=1,3
!
DO nb=1,nat
nb_blk = itau_blk(nb)
dyn(i,j,na,nb) = dyn(i,j,na,nb) + cfac(nb) * &
dyn_blk(i,j,na_blk,nb_blk)
END DO ! nb
!
END DO ! j
END DO ! i
END DO ! na
!
END DO ! iq
!
RETURN
END SUBROUTINE setupmat
!
!
!----------------------------------------------------------------------
SUBROUTINE set_asr (asr, nr1, nr2, nr3, frc, zeu, nat, ibrav, tau)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
CHARACTER (LEN=10) :: asr
INTEGER :: nr1, nr2, nr3, nat, ibrav
REAL(DP) :: frc(nr1,nr2,nr3,3,3,nat,nat), zeu(3,3,nat),tau(3,nat)
!
INTEGER :: axis, n, i, j, na, nb, n1,n2,n3, m,p,k,l,q,r, i1,j1,na1
REAL(DP) :: frc_new(nr1,nr2,nr3,3,3,nat,nat), zeu_new(3,3,nat)
type vector
real(DP),pointer :: vec(:,:,:,:,:,:,:)
end type vector
!
type (vector) u(6*3*nat)
! These are the "vectors" associated with the sum rules on force-constants
!
integer u_less(6*3*nat),n_less,i_less
! indices of the vectors u that are not independent to the preceding ones,
! n_less = number of such vectors, i_less = temporary parameter
!
integer ind_v(9*nat*nat*nr1*nr2*nr3,2,7)
real(DP) v(9*nat*nat*nr1*nr2*nr3,2)
! These are the "vectors" associated with symmetry conditions, coded by
! indicating the positions (i.e. the seven indices) of the non-zero elements (there
! should be only 2 of them) and the value of that element. We do so in order
! to limit the amount of memory used.
!
real(DP) w(nr1,nr2,nr3,3,3,nat,nat), x(nr1,nr2,nr3,3,3,nat,nat)
! temporary vectors and parameters
real(DP) :: scal,norm2, sum
!
real(DP) zeu_u(6*3,3,3,nat)
! These are the "vectors" associated with the sum rules on effective charges
!
integer zeu_less(6*3),nzeu_less,izeu_less
! indices of the vectors zeu_u that are not independent to the preceding ones,
! nzeu_less = number of such vectors, izeu_less = temporary parameter
!
real(DP) zeu_w(3,3,nat), zeu_x(3,3,nat)
! temporary vectors
! Initialization. n is the number of sum rules to be considered (if asr.ne.'simple')
! and 'axis' is the rotation axis in the case of a 1D system
! (i.e. the rotation axis is (Ox) if axis='1', (Oy) if axis='2' and (Oz) if axis='3')
!
if((asr.ne.'simple').and.(asr.ne.'crystal').and.(asr.ne.'one-dim') &
.and.(asr.ne.'zero-dim')) then
call errore('matdyn','invalid Acoustic Sum Rule:' // asr, 1)
endif
if(asr.eq.'crystal') n=3
if(asr.eq.'one-dim') then
! the direction of periodicity is the rotation axis
! It will work only if the crystal axis considered is one of
! the cartesian axis (typically, ibrav=1, 6 or 8, or 4 along the
! z-direction)
if (nr1*nr2*nr3.eq.1) axis=3
if ((nr1.ne.1).and.(nr2*nr3.eq.1)) axis=1
if ((nr2.ne.1).and.(nr1*nr3.eq.1)) axis=2
if ((nr3.ne.1).and.(nr1*nr2.eq.1)) axis=3
if (((nr1.ne.1).and.(nr2.ne.1)).or.((nr2.ne.1).and. &
(nr3.ne.1)).or.((nr1.ne.1).and.(nr3.ne.1))) then
call errore('matdyn','too many directions of &
& periodicity in 1D system',axis)
endif
if ((ibrav.ne.1).and.(ibrav.ne.6).and.(ibrav.ne.8).and. &
((ibrav.ne.4).or.(axis.ne.3)) ) then
write(6,*) 'asr: rotational axis may be wrong'
endif
write(6,'("asr rotation axis in 1D system= ",I4)') axis
n=4
endif
if(asr.eq.'zero-dim') n=6
! Acoustic Sum Rule on effective charges
!
if(asr.eq.'simple') then
do i=1,3
do j=1,3
sum=0.0
do na=1,nat
sum = sum + zeu(i,j,na)
end do
do na=1,nat
zeu(i,j,na) = zeu(i,j,na) - sum/nat
end do
end do
end do
else
! generating the vectors of the orthogonal of the subspace to project
! the effective charges matrix on
!
zeu_u(:,:,:,:)=0.0d0
do i=1,3
do j=1,3
do na=1,nat
zeu_new(i,j,na)=zeu(i,j,na)
enddo
enddo
enddo
!
p=0
do i=1,3
do j=1,3
! These are the 3*3 vectors associated with the
! translational acoustic sum rules
p=p+1
zeu_u(p,i,j,:)=1.0d0
!
enddo
enddo
!
if (n.eq.4) then
do i=1,3
! These are the 3 vectors associated with the
! single rotational sum rule (1D system)
p=p+1
do na=1,nat
zeu_u(p,i,MOD(axis,3)+1,na)=-tau(MOD(axis+1,3)+1,na)
zeu_u(p,i,MOD(axis+1,3)+1,na)=tau(MOD(axis,3)+1,na)
enddo
!
enddo
endif
!
if (n.eq.6) then
do i=1,3
do j=1,3
! These are the 3*3 vectors associated with the
! three rotational sum rules (0D system - typ. molecule)
p=p+1
do na=1,nat
zeu_u(p,i,MOD(j,3)+1,na)=-tau(MOD(j+1,3)+1,na)
zeu_u(p,i,MOD(j+1,3)+1,na)=tau(MOD(j,3)+1,na)
enddo
!
enddo
enddo
endif
!
! Gram-Schmidt orthonormalization of the set of vectors created.
!
nzeu_less=0
do k=1,p
zeu_w(:,:,:)=zeu_u(k,:,:,:)
zeu_x(:,:,:)=zeu_u(k,:,:,:)
do q=1,k-1
r=1
do izeu_less=1,nzeu_less
if (zeu_less(izeu_less).eq.q) r=0
enddo
if (r.ne.0) then
call sp_zeu(zeu_x,zeu_u(q,:,:,:),nat,scal)
zeu_w(:,:,:) = zeu_w(:,:,:) - scal* zeu_u(q,:,:,:)
endif
enddo
call sp_zeu(zeu_w,zeu_w,nat,norm2)
if (norm2.gt.1.0d-16) then
zeu_u(k,:,:,:) = zeu_w(:,:,:) / DSQRT(norm2)
else
nzeu_less=nzeu_less+1
zeu_less(nzeu_less)=k
endif
enddo
!
!
! Projection of the effective charge "vector" on the orthogonal of the
! subspace of the vectors verifying the sum rules
!
zeu_w(:,:,:)=0.0d0
do k=1,p
r=1
do izeu_less=1,nzeu_less
if (zeu_less(izeu_less).eq.k) r=0
enddo
if (r.ne.0) then
zeu_x(:,:,:)=zeu_u(k,:,:,:)
call sp_zeu(zeu_x,zeu_new,nat,scal)
zeu_w(:,:,:) = zeu_w(:,:,:) + scal*zeu_u(k,:,:,:)
endif
enddo
!
! Final substraction of the former projection to the initial zeu, to get
! the new "projected" zeu
!
zeu_new(:,:,:)=zeu_new(:,:,:) - zeu_w(:,:,:)
call sp_zeu(zeu_w,zeu_w,nat,norm2)
write(6,'("Norm of the difference between old and new effective ", &
& "charges: ",F25.20)') SQRT(norm2)
!
! Check projection
!
!write(6,'("Check projection of zeu")')
!do k=1,p
! zeu_x(:,:,:)=zeu_u(k,:,:,:)
! call sp_zeu(zeu_x,zeu_new,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("k= ",I8," zeu_new|zeu_u(k)= ",F15.10)') k,scal
!enddo
!
do i=1,3
do j=1,3
do na=1,nat
zeu(i,j,na)=zeu_new(i,j,na)
enddo
enddo
enddo
endif
!
!
!
!
!
!
! Acoustic Sum Rule on force constants in real space
!
if(asr.eq.'simple') then
do i=1,3
do j=1,3
do na=1,nat
sum=0.0
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
sum=sum+frc(n1,n2,n3,i,j,na,nb)
end do
end do
end do
end do
frc(1,1,1,i,j,na,na) = frc(1,1,1,i,j,na,na) - sum
! write(6,*) ' na, i, j, sum = ',na,i,j,sum
end do
end do
end do
else
! generating the vectors of the orthogonal of the subspace to project
! the force-constants matrix on
!
do k=1,18*nat
allocate(u(k) % vec(nr1,nr2,nr3,3,3,nat,nat))
u(k) % vec (:,:,:,:,:,:,:)=0.0d0
enddo
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
frc_new(n1,n2,n3,i,j,na,nb)=frc(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
p=0
do i=1,3
do j=1,3
do na=1,nat
! These are the 3*3*nat vectors associated with the
! translational acoustic sum rules
p=p+1
u(p) % vec (:,:,:,i,j,na,:)=1.0d0
!
enddo
enddo
enddo
!
if (n.eq.4) then
do i=1,3
do na=1,nat
! These are the 3*nat vectors associated with the
! single rotational sum rule (1D system)
p=p+1
do nb=1,nat
u(p) % vec (:,:,:,i,MOD(axis,3)+1,na,nb)=-tau(MOD(axis+1,3)+1,nb)
u(p) % vec (:,:,:,i,MOD(axis+1,3)+1,na,nb)=tau(MOD(axis,3)+1,nb)
enddo
!
enddo
enddo
endif
!
if (n.eq.6) then
do i=1,3
do j=1,3
do na=1,nat
! These are the 3*3*nat vectors associated with the
! three rotational sum rules (0D system - typ. molecule)
p=p+1
do nb=1,nat
u(p) % vec (:,:,:,i,MOD(j,3)+1,na,nb)=-tau(MOD(j+1,3)+1,nb)
u(p) % vec (:,:,:,i,MOD(j+1,3)+1,na,nb)=tau(MOD(j,3)+1,nb)
enddo
!
enddo
enddo
enddo
endif
!
m=0
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
! These are the vectors associated with the symmetry constraints
q=1
l=1
do while((l.le.m).and.(q.ne.0))
if ((ind_v(l,1,1).eq.n1).and.(ind_v(l,1,2).eq.n2).and. &
(ind_v(l,1,3).eq.n3).and.(ind_v(l,1,4).eq.i).and. &
(ind_v(l,1,5).eq.j).and.(ind_v(l,1,6).eq.na).and. &
(ind_v(l,1,7).eq.nb)) q=0
if ((ind_v(l,2,1).eq.n1).and.(ind_v(l,2,2).eq.n2).and. &
(ind_v(l,2,3).eq.n3).and.(ind_v(l,2,4).eq.i).and. &
(ind_v(l,2,5).eq.j).and.(ind_v(l,2,6).eq.na).and. &
(ind_v(l,2,7).eq.nb)) q=0
l=l+1
enddo
if ((n1.eq.MOD(nr1+1-n1,nr1)+1).and.(n2.eq.MOD(nr2+1-n2,nr2)+1) &
.and.(n3.eq.MOD(nr3+1-n3,nr3)+1).and.(i.eq.j).and.(na.eq.nb)) q=0
if (q.ne.0) then
m=m+1
ind_v(m,1,1)=n1
ind_v(m,1,2)=n2
ind_v(m,1,3)=n3
ind_v(m,1,4)=i
ind_v(m,1,5)=j
ind_v(m,1,6)=na
ind_v(m,1,7)=nb
v(m,1)=1.0d0/DSQRT(2.0d0)
ind_v(m,2,1)=MOD(nr1+1-n1,nr1)+1
ind_v(m,2,2)=MOD(nr2+1-n2,nr2)+1
ind_v(m,2,3)=MOD(nr3+1-n3,nr3)+1
ind_v(m,2,4)=j
ind_v(m,2,5)=i
ind_v(m,2,6)=nb
ind_v(m,2,7)=na
v(m,2)=-1.0d0/DSQRT(2.0d0)
endif
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
! Gram-Schmidt orthonormalization of the set of vectors created.
! Note that the vectors corresponding to symmetry constraints are already
! orthonormalized by construction.
!
n_less=0
do k=1,p
w(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
do l=1,m
!
call sp2(x,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
do r=1,2
n1=ind_v(l,r,1)
n2=ind_v(l,r,2)
n3=ind_v(l,r,3)
i=ind_v(l,r,4)
j=ind_v(l,r,5)
na=ind_v(l,r,6)
nb=ind_v(l,r,7)
w(n1,n2,n3,i,j,na,nb)=w(n1,n2,n3,i,j,na,nb)-scal*v(l,r)
enddo
enddo
if (k.le.(9*nat)) then
na1=MOD(k,nat)
if (na1.eq.0) na1=nat
j1=MOD((k-na1)/nat,3)+1
i1=MOD((((k-na1)/nat)-j1+1)/3,3)+1
else
q=k-9*nat
if (n.eq.4) then
na1=MOD(q,nat)
if (na1.eq.0) na1=nat
i1=MOD((q-na1)/nat,3)+1
else
na1=MOD(q,nat)
if (na1.eq.0) na1=nat
j1=MOD((q-na1)/nat,3)+1
i1=MOD((((q-na1)/nat)-j1+1)/3,3)+1
endif
endif
do q=1,k-1
r=1
do i_less=1,n_less
if (u_less(i_less).eq.q) r=0
enddo
if (r.ne.0) then
call sp3(x,u(q) % vec (:,:,:,:,:,:,:), i1,na1,nr1,nr2,nr3,nat,scal)
w(:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) - scal* u(q) % vec (:,:,:,:,:,:,:)
endif
enddo
call sp1(w,w,nr1,nr2,nr3,nat,norm2)
if (norm2.gt.1.0d-16) then
u(k) % vec (:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) / DSQRT(norm2)
else
n_less=n_less+1
u_less(n_less)=k
endif
enddo
!
! Projection of the force-constants "vector" on the orthogonal of the
! subspace of the vectors verifying the sum rules and symmetry contraints
!
w(:,:,:,:,:,:,:)=0.0d0
do l=1,m
call sp2(frc_new,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
do r=1,2
n1=ind_v(l,r,1)
n2=ind_v(l,r,2)
n3=ind_v(l,r,3)
i=ind_v(l,r,4)
j=ind_v(l,r,5)
na=ind_v(l,r,6)
nb=ind_v(l,r,7)
w(n1,n2,n3,i,j,na,nb)=w(n1,n2,n3,i,j,na,nb)+scal*v(l,r)
enddo
enddo
do k=1,p
r=1
do i_less=1,n_less
if (u_less(i_less).eq.k) r=0
enddo
if (r.ne.0) then
x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
call sp1(x,frc_new,nr1,nr2,nr3,nat,scal)
w(:,:,:,:,:,:,:) = w(:,:,:,:,:,:,:) + scal*u(k)%vec(:,:,:,:,:,:,:)
endif
deallocate(u(k) % vec)
enddo
!
! Final substraction of the former projection to the initial frc, to get
! the new "projected" frc
!
frc_new(:,:,:,:,:,:,:)=frc_new(:,:,:,:,:,:,:) - w(:,:,:,:,:,:,:)
call sp1(w,w,nr1,nr2,nr3,nat,norm2)
write(6,'("Norm of the difference between old and new force-constants:",&
& F25.20)') SQRT(norm2)
!
! Check projection
!
!write(6,'("Check projection IFC")')
!do l=1,m
! call sp2(frc_new,v(l,:),ind_v(l,:,:),nr1,nr2,nr3,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("l= ",I8," frc_new|v(l)= ",F15.10)') l,scal
!enddo
!do k=1,p
! x(:,:,:,:,:,:,:)=u(k) % vec (:,:,:,:,:,:,:)
! call sp1(x,frc_new,nr1,nr2,nr3,nat,scal)
! if (DABS(scal).gt.1d-10) write(6,'("k= ",I8," frc_new|u(k)= ",F15.10)') k,scal
! deallocate(u(k) % vec)
!enddo
!
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
frc(n1,n2,n3,i,j,na,nb)=frc_new(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
endif
!
!
return
end subroutine set_asr
!
!----------------------------------------------------------------------
subroutine sp_zeu(zeu_u,zeu_v,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two effective charges matrices zeu_u and zeu_v
! (considered as vectors in the R^(3*3*nat) space, and coded in the usual way)
!
USE kinds, ONLY: DP
implicit none
integer i,j,na,nat
real(DP) zeu_u(3,3,nat)
real(DP) zeu_v(3,3,nat)
real(DP) scal
!
!
scal=0.0d0
do i=1,3
do j=1,3
do na=1,nat
scal=scal+zeu_u(i,j,na)*zeu_v(i,j,na)
enddo
enddo
enddo
!
return
!
end subroutine sp_zeu
!
!
!----------------------------------------------------------------------
subroutine sp1(u,v,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two force-constants matrices u and v (considered as
! vectors in the R^(3*3*nat*nat*nr1*nr2*nr3) space, and coded in the usual way)
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,j,na,nb,n1,n2,n3,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
real(DP) v(nr1,nr2,nr3,3,3,nat,nat)
real(DP) scal
!
!
scal=0.0d0
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
scal=scal+u(n1,n2,n3,i,j,na,nb)*v(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
enddo
enddo
!
return
!
end subroutine sp1
!
!----------------------------------------------------------------------
subroutine sp2(u,v,ind_v,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! does the scalar product of two force-constants matrices u and v (considered as
! vectors in the R^(3*3*nat*nat*nr1*nr2*nr3) space). u is coded in the usual way
! but v is coded as explained when defining the vectors corresponding to the
! symmetry constraints
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
integer ind_v(2,7)
real(DP) v(2)
real(DP) scal
!
!
scal=0.0d0
do i=1,2
scal=scal+u(ind_v(i,1),ind_v(i,2),ind_v(i,3),ind_v(i,4),ind_v(i,5),ind_v(i,6), &
ind_v(i,7))*v(i)
enddo
!
return
!
end subroutine sp2
!
!----------------------------------------------------------------------
subroutine sp3(u,v,i,na,nr1,nr2,nr3,nat,scal)
!-----------------------------------------------------------------------
!
! like sp1, but in the particular case when u is one of the u(k)%vec
! defined in set_asr (before orthonormalization). In this case most of the
! terms are zero (the ones that are not are characterized by i and na), so
! that a lot of computer time can be saved (during Gram-Schmidt).
!
USE kinds, ONLY: DP
implicit none
integer nr1,nr2,nr3,i,j,na,nb,n1,n2,n3,nat
real(DP) u(nr1,nr2,nr3,3,3,nat,nat)
real(DP) v(nr1,nr2,nr3,3,3,nat,nat)
real(DP) scal
!
!
scal=0.0d0
do j=1,3
do nb=1,nat
do n1=1,nr1
do n2=1,nr2
do n3=1,nr3
scal=scal+u(n1,n2,n3,i,j,na,nb)*v(n1,n2,n3,i,j,na,nb)
enddo
enddo
enddo
enddo
enddo
!
return
!
end subroutine sp3
!
!-----------------------------------------------------------------------
SUBROUTINE q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!-----------------------------------------------------------------------
! generate list of q (qbid) that are G-vectors of the supercell
! but not of the bulk
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER :: nsc
REAL(DP) qbid(3,nsc), at_blk(3,3), bg_blk(3,3), at(3,3), bg(3,3)
!
INTEGER, PARAMETER:: nr1=4, nr2=4, nr3=4, &
nrm=(2*nr1+1)*(2*nr2+1)*(2*nr3+1)
REAL(DP), PARAMETER:: eps=1.0e-7
INTEGER :: i, j, k,i1, i2, i3, idum(nrm), iq
REAL(DP) :: qnorm(nrm), qbd(3,nrm) ,qwork(3), delta
LOGICAL lbho
!
i = 0
DO i1=-nr1,nr1
DO i2=-nr2,nr2
DO i3=-nr3,nr3
i = i + 1
DO j=1,3
qwork(j) = i1*bg(j,1) + i2*bg(j,2) + i3*bg(j,3)
END DO ! j
!
qnorm(i) = qwork(1)**2 + qwork(2)**2 + qwork(3)**2
!
DO j=1,3
!
qbd(j,i) = at_blk(1,j)*qwork(1) + &
at_blk(2,j)*qwork(2) + &
at_blk(3,j)*qwork(3)
END DO ! j
!
idum(i) = 1
!
END DO ! i3
END DO ! i2
END DO ! i1
!
DO i=1,nrm-1
IF (idum(i).EQ.1) THEN
DO j=i+1,nrm
IF (idum(j).EQ.1) THEN
lbho=.TRUE.
DO k=1,3
delta = qbd(k,i)-qbd(k,j)
lbho = lbho.AND. (ABS(NINT(delta)-delta).LT.eps)
END DO ! k
IF (lbho) THEN
IF(qnorm(i).GT.qnorm(j)) THEN
qbd(1,i) = qbd(1,j)
qbd(2,i) = qbd(2,j)
qbd(3,i) = qbd(3,j)
qnorm(i) = qnorm(j)
END IF
idum(j) = 0
END IF
END IF
END DO ! j
END IF
END DO ! i
!
iq = 0
DO i=1,nrm
IF (idum(i).EQ.1) THEN
iq=iq+1
qbid(1,iq)= bg_blk(1,1)*qbd(1,i) + &
bg_blk(1,2)*qbd(2,i) + &
bg_blk(1,3)*qbd(3,i)
qbid(2,iq)= bg_blk(2,1)*qbd(1,i) + &
bg_blk(2,2)*qbd(2,i) + &
bg_blk(2,3)*qbd(3,i)
qbid(3,iq)= bg_blk(3,1)*qbd(1,i) + &
bg_blk(3,2)*qbd(2,i) + &
bg_blk(3,3)*qbd(3,i)
END IF
END DO ! i
!
IF (iq.NE.nsc) CALL errore('q_gen',' probably nr1,nr2,nr3 too small ', iq)
RETURN
END SUBROUTINE q_gen
!
!-----------------------------------------------------------------------
SUBROUTINE check_at(at,bg_blk,alat,omega)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
REAL(DP) :: at(3,3), bg_blk(3,3), alat, omega
REAL(DP) :: work(3,3)
INTEGER :: i,j
REAL(DP), PARAMETER :: small=1.d-6
!
work(:,:) = at(:,:)
CALL cryst_to_cart(3,work,bg_blk,-1)
!
DO j=1,3
DO i =1,3
IF ( ABS(work(i,j)-NINT(work(i,j))) > small) THEN
WRITE (*,'(3f9.4)') work(:,:)
CALL errore ('check_at','at not multiple of at_blk',1)
END IF
END DO
END DO
!
omega =alat**3 * ABS(at(1,1)*(at(2,2)*at(3,3)-at(3,2)*at(2,3))- &
at(1,2)*(at(2,1)*at(3,3)-at(2,3)*at(3,1))+ &
at(1,3)*(at(2,1)*at(3,2)-at(2,2)*at(3,1)))
!
RETURN
END SUBROUTINE check_at
!
!-----------------------------------------------------------------------
SUBROUTINE set_tau (nat, nat_blk, at, at_blk, tau, tau_blk, &
ityp, ityp_blk, itau_blk)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
INTEGER nat, nat_blk,ityp(nat),ityp_blk(nat_blk), itau_blk(nat)
REAL(DP) at(3,3),at_blk(3,3),tau(3,nat),tau_blk(3,nat_blk)
!
REAL(DP) bg(3,3), r(3) ! work vectors
INTEGER i,i1,i2,i3,na,na_blk
REAL(DP) small
INTEGER NN1,NN2,NN3
PARAMETER (NN1=8, NN2=8, NN3=8, small=1.d-8)
!
CALL recips (at(1,1),at(1,2),at(1,3),bg(1,1),bg(1,2),bg(1,3))
!
na = 0
!
DO i1 = -NN1,NN1
DO i2 = -NN2,NN2
DO i3 = -NN3,NN3
r(1) = i1*at_blk(1,1) + i2*at_blk(1,2) + i3*at_blk(1,3)
r(2) = i1*at_blk(2,1) + i2*at_blk(2,2) + i3*at_blk(2,3)
r(3) = i1*at_blk(3,1) + i2*at_blk(3,2) + i3*at_blk(3,3)
CALL cryst_to_cart(1,r,bg,-1)
!
IF ( r(1).GT.-small .AND. r(1).LT.1.d0-small .AND. &
r(2).GT.-small .AND. r(2).LT.1.d0-small .AND. &
r(3).GT.-small .AND. r(3).LT.1.d0-small ) THEN
CALL cryst_to_cart(1,r,at,+1)
!
DO na_blk=1, nat_blk
na = na + 1
IF (na.GT.nat) CALL errore('set_tau','too many atoms',na)
tau(1,na) = tau_blk(1,na_blk) + r(1)
tau(2,na) = tau_blk(2,na_blk) + r(2)
tau(3,na) = tau_blk(3,na_blk) + r(3)
ityp(na) = ityp_blk(na_blk)
itau_blk(na) = na_blk
END DO
!
END IF
!
END DO
END DO
END DO
!
IF (na.NE.nat) CALL errore('set_tau','too few atoms: increase NNs',na)
!
RETURN
END SUBROUTINE set_tau
!
!-----------------------------------------------------------------------
SUBROUTINE read_tau &
(nat, nat_blk, ntyp, bg_blk, tau, tau_blk, ityp, itau_blk)
!---------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
INTEGER nat, nat_blk, ntyp, ityp(nat),itau_blk(nat)
REAL(DP) bg_blk(3,3),tau(3,nat),tau_blk(3,nat_blk)
!
REAL(DP) r(3) ! work vectors
INTEGER i,na,na_blk
!
REAL(DP) small
PARAMETER ( small = 1.d-6 )
!
DO na=1,nat
READ(*,*) (tau(i,na),i=1,3), ityp(na)
IF (ityp(na).LE.0 .OR. ityp(na) .GT. ntyp) &
CALL errore('read_tau',' wrong atomic type', na)
DO na_blk=1,nat_blk
r(1) = tau(1,na) - tau_blk(1,na_blk)
r(2) = tau(2,na) - tau_blk(2,na_blk)
r(3) = tau(3,na) - tau_blk(3,na_blk)
CALL cryst_to_cart(1,r,bg_blk,-1)
IF (ABS( r(1)-NINT(r(1)) ) .LT. small .AND. &
ABS( r(2)-NINT(r(2)) ) .LT. small .AND. &
ABS( r(3)-NINT(r(3)) ) .LT. small ) THEN
itau_blk(na) = na_blk
go to 999
END IF
END DO
CALL errore ('read_tau',' wrong atomic position ', na)
999 CONTINUE
END DO
!
RETURN
END SUBROUTINE read_tau
!
!-----------------------------------------------------------------------
SUBROUTINE write_tau(fltau,nat,tau,ityp)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
!
INTEGER nat, ityp(nat)
REAL(DP) tau(3,nat)
CHARACTER(LEN=*) fltau
!
INTEGER i,na
!
OPEN (unit=4,file=fltau, status='new')
DO na=1,nat
WRITE(4,'(3(f12.6),i3)') (tau(i,na),i=1,3), ityp(na)
END DO
CLOSE (4)
!
RETURN
END SUBROUTINE write_tau
!
!-----------------------------------------------------------------------
SUBROUTINE gen_qpoints (ibrav, at, bg, nat, tau, ityp, nk1, nk2, nk3, &
symm_type, ntetra, nqx, nq, q, tetra)
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
!
IMPLICIT NONE
! input
INTEGER :: ibrav, nat, nk1, nk2, nk3, ntetra, ityp(*)
REAL(DP) :: at(3,3), bg(3,3), tau(3,nat)
character(LEN=9) :: symm_type
! output
INTEGER :: nqx, nq, tetra(4,ntetra)
REAL(DP) :: q(3,nqx)
! local
INTEGER :: nrot, nsym, s(3,3,48), ftau(3,48), irt(48,nat)
INTEGER :: t_rev = 0
LOGICAL :: minus_q, invsym
REAL(DP) :: xqq(3), wk(nqx), mdum(3,nat)
CHARACTER(LEN=45) :: sname(48)
!
xqq (:) =0.d0
IF (ibrav == 4 .OR. ibrav == 5) THEN
!
! hexagonal or trigonal bravais lattice
!
CALL hexsym (at, s, sname, nrot)
ELSEIF (ibrav >= 1 .AND. ibrav <= 14) THEN
!
! cubic bravais lattice
!
CALL cubicsym (at, s, sname, nrot)
ELSEIF (ibrav == 0) THEN
if (symm_type=='cubic') then
CALL cubicsym (at, s, sname, nrot)
elseif (symm_type=='hexagonal') then
CALL hexsym (at, s, sname, nrot)
else
CALL infomsg ('gen_qpoints', 'symm_type missing: assuming cubic symmetry', -1)
CALL cubicsym (at, s, sname, nrot)
end if
ELSE
CALL errore ('gen_qpoints', 'wrong ibrav', 1)
ENDIF
!
CALL kpoint_grid ( nrot, s, bg, nqx, 0,0,0, nk1,nk2,nk3, nq, q, wk)
!
CALL sgama (nrot, nat, s, sname, t_rev, at, bg, tau, ityp, nsym, 6, &
6, 6, irt, ftau, nqx, nq, q, wk, invsym, minus_q, xqq, &
0, 0, .FALSE., mdum)
IF (ntetra /= 6 * nk1 * nk2 * nk3) &
CALL errore ('gen_qpoints','inconsistent ntetra',1)
CALL tetrahedra (nsym, s, minus_q, at, bg, nqx, 0, 0, 0, &
nk1, nk2, nk3, nq, q, wk, ntetra, tetra)
!
RETURN
END SUBROUTINE gen_qpoints
!
!---------------------------------------------------------------------
SUBROUTINE a2Fdos &
(nat, nq, nr1, nr2, nr3, ibrav, at, bg, tau, alat, &
nsc, nat_blk, at_blk, bg_blk, itau_blk, omega_blk, rws, nrws, &
dos, Emin, DeltaE, ndos, ntetra, tetra, asr, q, freq )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
USE ifconstants
!
IMPLICIT NONE
!
INTEGER, INTENT(in) :: nat, nq, nr1, nr2, nr3, ibrav, ndos, ntetra, &
tetra(4, ntetra)
LOGICAL, INTENT(in) :: dos
CHARACTER(LEN=*), INTENT(IN) :: asr
REAL(DP), INTENT(in) :: freq(3*nat,nq), q(3,nq), at(3,3), bg(3,3), &
tau(3,nat), alat, Emin, DeltaE
!
INTEGER, INTENT(in) :: nsc, nat_blk, itau_blk, nrws
REAL(DP), INTENT(in) :: rws(0:3,nrws), at_blk(3,3), bg_blk(3,3), omega_blk
!
REAL(DP), ALLOCATABLE :: gamma(:,:), frcg(:,:,:,:,:,:,:)
COMPLEX(DP), ALLOCATABLE :: gam(:,:,:,:), gam_blk(:,:,:,:), z(:,:)
real(DP) :: lambda, dos_a2F(50), temp, dos_ee(10), dos_tot, &
deg(10), fermi(10), E
real(DP), parameter :: rydTHz = 3289.828d0, eps_w2 = 0.0000001d0
integer :: isig, ifn, n, m, na, nb, nc, nu, nmodes, &
i,j,k, ngauss, jsig, p1, p2, p3, filea2F
character(len=14) :: name
!
!
nmodes = 3*nat
do isig=1,10
filea2F = 60 + isig
write(name,"(A10,I2)") 'a2Fmatdyn.',filea2F
open(filea2F, file=name, STATUS = 'unknown')
READ(filea2F,*) deg(isig), fermi(isig), dos_ee(isig)
enddo
!
IF(dos) then
open(400,file='lambda',status='unknown')
write(400,*)
write(400,*) ' Electron-phonon coupling constant, lambda '
write(400,*)
ELSE
open (20,file='gam.lines' ,status='unknown')
write(20,*)
write(20,*) ' Gamma lines for all modes [THz] '
write(20,*)
write(6,*)
write(6,*) ' Gamma lines for all modes [Rydberg] '
write(6,*)
ENDIF
!
ALLOCATE ( frcg(nr1,nr2,nr3,3,3,nat,nat) )
ALLOCATE ( gamma(3*nat,nq), gam(3,3,nat,nat), gam_blk(3,3,nat_blk,nat_blk) )
ALLOCATE ( z(3*nat,3*nat) )
!
frcg(:,:,:,:,:,:,:) = 0.d0
DO isig = 1, 10
filea2F = 60 + isig
CALL readfg ( filea2F, nr1, nr2, nr3, nat, frcg )
!
if ( asr /= 'no') then
CALL set_asr (asr, nr1, nr2, nr3, frcg, zeu, nat_blk, ibrav, tau_blk)
endif
!
open(300,file='dyna2F',status='old')
!
do n = 1 ,nq
gam(:,:,:,:) = (0.d0, 0.d0)
read(300,*)
do na=1,nmodes
read(300,*) (z(na,m),m=1,nmodes)
end do ! na
!
CALL setgam (q(1,n), gam, nat, at, bg, tau, itau_blk, nsc, alat, &
gam_blk, nat_blk, at_blk,bg_blk,tau_blk, omega_blk, &
frcg, nr1,nr2,nr3, rws, nrws)
!
! here multiply dyn*gam*dyn for gamma and divide by w2 for lambda at given q
!
do nc = 1, nat
do k =1, 3
p1 = (nc-1)*3+k
nu = p1
gamma(nu,n) = 0.0d0
do i=1,3
do na=1,nat
p2 = (na-1)*3+i
do j=1,3
do nb=1,nat
p3 = (nb-1)*3+j
gamma(nu,n) = gamma(nu,n) + DBLE(conjg(z(p2,p1)) * &
gam(i,j,na,nb) * z(p3,p1))
enddo ! nb
enddo ! j
enddo ! na
enddo !i
gamma(nu,n) = gamma(nu,n) * 3.1415926d0 / 2.0d0
enddo ! k
enddo !nc
!
!
EndDo !nq all points in BZ
close(300) ! file with dyn vectors
!
! after we know gamma(q) and lambda(q) calculate DOS(omega) for spectrum a2F
!
if(dos) then
!
if(isig.le.9) then
write(name,'(A8,I1.1)') 'a2F.dos.',isig
else
write(name,'(A8,I2.2)') 'a2F.dos.',isig
endif
ifn = 200 + isig
open (ifn,file=name,status='unknown',form='formatted')
write(ifn,*)
write(ifn,*) ' Eliashberg function a2F (per both spin)'
write(ifn,*) ' frequencies in Rydberg '
write(ifn,*) ' DOS normalized to E in Rydberg: a2F_total, a2F(mode) '
write(ifn,*)
!
! correction for small frequencies
!
do n = 1, nq
do i = 1, nmodes
if (freq(i,n).LE.eps_w2) then
gamma(i,n) = 0.0d0
endif
enddo
enddo
!
lambda = 0.0d0
do n= 1, ndos
!
E = Emin + (n-1)*DeltaE + 0.5d0*DeltaE
dos_tot = 0.0d0
do j=1,nmodes
!
dos_a2F(j) = 0.0d0
CALL dos_gam(nmodes, nq, j, ntetra, tetra, &
gamma, freq, E, dos_a2F(j))
dos_a2F(j) = dos_a2F(j) / dos_ee(isig)
dos_tot = dos_tot + dos_a2F(j)
!
enddo
lambda = lambda + dos_tot/E * DeltaE / 3.1415926d0
write (ifn, 1050) E, dos_tot, (dos_a2F(j),j=1,nmodes)
enddo !ndos
write(ifn,*) " lambda =",lambda,' Delta = ',DeltaE
close (ifn)
write(400,'(" Broadening ",F8.4," lambda ",F12.4," dos_el ",F8.4)') &
deg(isig),lambda, dos_ee(isig)
!
endif !dos
!
! OUTPUT
!
if(.not.dos) then
write(20,'(" Broadening ",F8.4)') deg(isig)
write(6,'(" Broadening ",F8.4)') deg(isig)
do n=1, nq
write(20,1030) n,(gamma(i,n)*rydTHz,i=1,3*nat)
write(6,1040) n, (gamma(i,n),i=1,3*nat)
end do
endif
!
ENDDO !isig
!
DEALLOCATE (z, frcg, gamma, gam, gam_blk )
!
close(400) !lambda
close(20)
!
1030 FORMAT( 3x,I5,' ',9F8.4 )
1040 FORMAT( 3x,I5,' ',6F12.9 )
1050 FORMAT( 3x,F12.6,6F16.8 )
!
RETURN
END SUBROUTINE a2Fdos
!
!-----------------------------------------------------------------------
subroutine setgam (q, gam, nat, at,bg,tau,itau_blk,nsc,alat, &
& gam_blk, nat_blk, at_blk,bg_blk,tau_blk,omega_blk, &
& frcg, nr1,nr2,nr3, rws,nrws)
!-----------------------------------------------------------------------
! compute the dynamical matrix (the analytic part only)
!
USE kinds, ONLY : DP
implicit none
real(DP), parameter :: tpi=2.d0*3.14159265358979d0
!
! I/O variables
!
integer :: nr1, nr2, nr3, nat, nat_blk, &
nsc, nrws, itau_blk(nat)
real(DP) :: q(3), tau(3,nat), at(3,3), bg(3,3), alat, rws(0:3,nrws)
real(DP) :: tau_blk(3,nat_blk), at_blk(3,3), bg_blk(3,3), omega_blk, &
frcg(nr1,nr2,nr3,3,3,nat_blk,nat_blk)
COMPLEX(DP) :: gam_blk(3,3,nat_blk,nat_blk)
COMPLEX(DP) :: gam(3,3,nat,nat)
!
! local variables
!
real(DP) :: arg
complex(DP) :: cfac(nat)
integer :: i,j,k, na,nb, na_blk, nb_blk, iq
real(DP) :: qp(3), qbid(3,nsc) ! automatic array
!
!
call q_gen(nsc,qbid,at_blk,bg_blk,at,bg)
!
do iq=1,nsc
!
do k=1,3
qp(k)= q(k) + qbid(k,iq)
end do
!
gam_blk(:,:,:,:) = (0.d0,0.d0)
CALL frc_blk (gam_blk,qp,tau_blk,nat_blk, &
nr1,nr2,nr3,frcg,at_blk,bg_blk,rws,nrws)
!
do na=1,nat
na_blk = itau_blk(na)
do nb=1,nat
nb_blk = itau_blk(nb)
!
arg = tpi * ( qp(1) * ( (tau(1,na)-tau_blk(1,na_blk)) - &
(tau(1,nb)-tau_blk(1,nb_blk)) ) + &
qp(2) * ( (tau(2,na)-tau_blk(2,na_blk)) - &
(tau(2,nb)-tau_blk(2,nb_blk)) ) + &
qp(3) * ( (tau(3,na)-tau_blk(3,na_blk)) - &
(tau(3,nb)-tau_blk(3,nb_blk)) ) )
!
cfac(nb) = cmplx(cos(arg),sin(arg))/nsc
!
end do ! nb
do nb=1,nat
do i=1,3
do j=1,3
nb_blk = itau_blk(nb)
gam(i,j,na,nb) = gam(i,j,na,nb) + cfac(nb) * &
gam_blk(i,j,na_blk,nb_blk)
end do ! j
end do ! i
end do ! nb
end do ! na
!
end do ! iq
!
return
end subroutine setgam
!
!--------------------------------------------------------------------
subroutine dos_gam (nbndx, nq, jbnd, ntetra, &
tetra, gamma, et, ef, dos_a2F)
!--------------------------------------------------------------------
! calculates weights with the tetrahedron method (Bloechl version)
! this subroutine is based on tweights.f90 belonging to PW
! it calculates a2F on the surface of given frequency <=> histogram
! Band index means the frequency mode here
! and "et" means the frequency(mode,q-point)
!
USE kinds, ONLY: DP
use parameters
! USE ifconstants, ONLY : gamma
implicit none
!
integer :: nq, nbndx, ntetra, tetra(4,ntetra), jbnd
real(DP) :: et(nbndx,nq), gamma(nbndx,nq), func
real(DP) :: ef, dos_a2F
real(DP) :: e1, e2, e3, e4, c1, c2, c3, c4, etetra(4)
integer :: ik, ibnd, nt, nk, ns, i, ik1, ik2, ik3, ik4, itetra(4)
real(DP) :: f12,f13,f14,f23,f24,f34, f21,f31,f41,f42,f32,f43
real(DP) :: P1,P2,P3,P4, G, Z, o13, Y1,Y2,Y3,Y4, WW, eps,vol, Tint
Tint = 0.0d0
eps = 1.0d-14
vol = 1.0d0/ntetra
do nt = 1, ntetra
ibnd = jbnd
!
! etetra are the energies at the vertexes of the nt-th tetrahedron
!
do i = 1, 4
etetra(i) = et(ibnd, tetra(i,nt))
enddo
itetra(1) = 0
call hpsort (4,etetra,itetra)
!
! ...sort in ascending order: e1 < e2 < e3 < e4
!
e1 = etetra (1)
e2 = etetra (2)
e3 = etetra (3)
e4 = etetra (4)
!
! kp1-kp4 are the irreducible k-points corresponding to e1-e4
!
ik1 = tetra(itetra(1),nt)
ik2 = tetra(itetra(2),nt)
ik3 = tetra(itetra(3),nt)
ik4 = tetra(itetra(4),nt)
Y1 = gamma(ibnd,ik1)/et(ibnd,ik1)
Y2 = gamma(ibnd,ik2)/et(ibnd,ik2)
Y3 = gamma(ibnd,ik3)/et(ibnd,ik3)
Y4 = gamma(ibnd,ik4)/et(ibnd,ik4)
f12 = (ef-e2)/(e1-e2)
f13 = (ef-e3)/(e1-e3)
f14 = (ef-e4)/(e1-e4)
f23 = (ef-e3)/(e2-e3)
f24 = (ef-e4)/(e2-e4)
f34 = (ef-e4)/(e3-e4)
f21 = 1.0d0 - f12
f31 = 1.0d0 - f13
f41 = 1.0d0 - f14
f32 = 1.0d0 - f23
f42 = 1.0d0 - f24
f43 = 1.0d0 - f34
o13 = 1.0d0/3.0d0
G = 0.0d0
P1 = 0.0d0
P2 = 0.0d0
P3 = 0.0d0
P4 = 0.0d0
IF(e1.gt.ef.or.e4.lt.ef) then
goto 500
ENDIF
IF(e3.lt.ef.and.ef.lt.e4) THEN
Z = (1.0d0 - f14 * f24 * f34)
G = 3.0d0 * (1.0d0 - Z) / (e4-ef)
P1 = f14 * o13
P2 = f24 * o13
P3 = f34 * o13
P4 = (f41 + f42 + f43) * o13
goto 200
ENDIF
IF(e2.lt.ef.and.ef.lt.e3) THEN
G = 3.0d0 * (f23*f31 + f32*f24)
P1 = f14 * o13 + f13*f31*f23 / G
P2 = f23 * o13 + f24*f24*f32 / G
P3 = f32 * o13 + f31*f31*f23 / G
P4 = f41 * o13 + f42*f24*f32 / G
G = G / (e4-e1)
goto 200
ENDIF
IF(e1.lt.ef.and.ef.lt.e2) THEN
Z = f21 * f31 * f41
G = 3.0d0 * Z / (ef-e1)
P1 = o13 * (f12 + f12 + f14)
P2 = o13 * f21
P3 = o13 * f31
P4 = o13 * f41
goto 200
ENDIF
200 WW = G * (Y1*P1 + Y2*P2 + Y3*P3 + Y4*P4)
Tint = Tint + WW * vol
500 continue
enddo ! ntetra
dos_a2F = Tint !2 because DOS_ee is per 1 spin
return
end subroutine dos_gam
!
!
!-----------------------------------------------------------------------
subroutine readfg ( ifn, nr1, nr2, nr3, nat, frcg )
!-----------------------------------------------------------------------
!
USE kinds, ONLY : DP
implicit none
! I/O variable
integer, intent(in) :: nr1,nr2,nr3, nat
real(DP), intent(out) :: frcg(nr1,nr2,nr3,3,3,nat,nat)
! local variables
integer i, j, na, nb, m1,m2,m3, ifn
integer ibid, jbid, nabid, nbbid, m1bid,m2bid,m3bid
!
!
READ (ifn,*) m1, m2, m3
if ( m1 /= nr1 .or. m2 /= nr2 .or. m3 /= nr3) &
call errore('readfG','inconsistent nr1, nr2, nr3 read',1)
do i=1,3
do j=1,3
do na=1,nat
do nb=1,nat
read (ifn,*) ibid, jbid, nabid, nbbid
if(i.ne.ibid.or.j.ne.jbid.or.na.ne.nabid.or.nb.ne.nbbid) then
write(*,*) i,j,na,nb,' <> ', ibid, jbid, nabid, nbbid
call errore ('readfG','error in reading',1)
else
read (ifn,*) (((m1bid, m2bid, m3bid, &
frcg(m1,m2,m3,i,j,na,nb), &
m1=1,nr1),m2=1,nr2),m3=1,nr3)
endif
end do
end do
end do
end do
!
close(ifn)
!
return
end subroutine readfg
More information about the users
mailing list