[Pw_forum] pseudopotential generation with atomic

Paolo Giannozzi giannozz at nest.sns.it
Wed Jun 1 18:39:03 CEST 2005


On Wednesday 01 June 2005 14:14, Eduardo Ariel Menendez P wrote:

> I have tried using lloc=1, as well as 0 and 2. I also tried moving rcut
> between 2.0 and 2.6, and I always have the same problem.

> 4D  4  2   10.00  0.0  1.6  2.5
> 5S  5  0    2.00  0.0  2.4  2.5
> 5P  5  1    0.00  0.0  2.4  2.5

the principal quantum number (the first integer right of the label)
must be referred to the pseudopotential casse, not to the all-electron 
case, so: 1 for 5s, 2 for 5p, 3 for 4d. This is unfortunately not very 
clear (i.e. not clear at all) in the documentation (it is in the examples).
See the attached input and output.

Paolo

-- 
Paolo Giannozzi             e-mail:  giannozz at nest.sns.it
Scuola Normale Superiore    Phone:   +39/050-509876, Fax:-563513 
Piazza dei Cavalieri 7      I-56126 Pisa, Italy
-------------- next part --------------
 &input
     atom='Cd',
     iswitch=3,
     dft='PBE',
     nld=3,
     rlderiv=2.5
     eminld=-1.0,
     emaxld=1.0,
     deld=0.05,
     config='[Kr] 4d10 5s2 5p0'
/
 &test
    pseudotype=1,
    nconf=1,
    configts(1)='4d10 5s2 5p0'
/
 &inputp
     lloc=1,
     file_pseudopw='Cd.TM',
     zval=12.0,
     tm=.true.
/
3
4D  3  2   10.00  0.0  1.6  1.6
5S  1  0    2.00  0.0  2.4  2.4
5P  2  1    0.00  0.0  2.4  2.4
-------------- next part --------------

     program ld1 starts. version 20-May-04
     today is  1Jun2005 at 16:28:47 

     -------------------- All-electron run ------------------------------

                                                                                
     scalar relativistic calculation

     atomic number is 48.00
     dft =PBE   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1239 r(mesh) =  99.86297 xmin = -7.00 dx = 0.01250

     n l     nl                  e(Ryd)         e(Ha)          e(eV)
     1 0     1S 1( 2.00)     -1949.6083      -974.8041    -26525.9804
     2 0     2S 1( 2.00)      -289.4415      -144.7208     -3938.0838
     2 1     2P 1( 6.00)      -259.7080      -129.8540     -3533.5349
     3 0     3S 1( 2.00)       -53.9458       -26.9729      -733.9754
     3 1     3P 1( 6.00)       -44.1926       -22.0963      -601.2753
     4 0     4S 1( 2.00)        -7.7848        -3.8924      -105.9183
     4 1     4P 1( 6.00)        -4.9220        -2.4610       -66.9676
     3 2     3D 1(10.00)       -28.9318       -14.4659      -393.6408
     4 2     4D 1(10.00)        -0.8624        -0.4312       -11.7330
     5 0     5S 1( 2.00)        -0.4159        -0.2080        -5.6593
     5 1     5P 1( 0.00)        -0.0870        -0.0435        -1.1835

     eps = 8.6E-15  iter = 32
 
     Etot =  -11189.313006 Ry,   -5594.656503 Ha, -152239.554894 eV

     Ekin =   11643.488224 Ry,    5821.744112 Ha,  158418.972082 eV
     Encl =  -27054.240915 Ry,  -13527.120457 Ha, -368094.591037 eV
     Eh   =    4530.042716 Ry,    2265.021358 Ha,   61634.855179 eV
     Exc  =    -308.603031 Ry,    -154.301515 Ha,   -4198.791118 eV
     Evxt =       0.000000 Ry,       0.000000 Ha,       0.000000 eV
     Epseu=       0.000000 Ry,       0.000000 Ha,       0.000000 eV


     normalization and overlap integrals

     s(1S/1S) =  1.000000  <r> =   0.0304  <r2> =    0.0012  r(max) =   0.0196
     s(1S/2S) = -0.012089
     s(1S/3S) = -0.005018
     s(1S/4S) = -0.002184
     s(1S/5S) = -0.000592
     s(2S/2S) =  1.000000  <r> =   0.1317  <r2> =    0.0204  r(max) =   0.1112
     s(2S/3S) = -0.003067
     s(2S/4S) = -0.001287
     s(2S/5S) = -0.000347
     s(2P/2P) =  1.000000  <r> =   0.1149  <r2> =    0.0161  r(max) =   0.0888
     s(2P/3P) = -0.002505
     s(2P/4P) = -0.000969
     s(2P/5P) = -0.000165
     s(3S/3S) =  1.000000  <r> =   0.3583  <r2> =    0.1468  r(max) =   0.3259
     s(3S/4S) = -0.000854
     s(3S/5S) = -0.000226
     s(3P/3P) =  1.000000  <r> =   0.3571  <r2> =    0.1480  r(max) =   0.3178
     s(3P/4P) = -0.000709
     s(3P/5P) = -0.000118
     s(4S/4S) =  1.000000  <r> =   0.8791  <r2> =    0.8757  r(max) =   0.7916
     s(4S/5S) = -0.000136
     s(4P/4P) =  1.000000  <r> =   0.9602  <r2> =    1.0567  r(max) =   0.8427
     s(4P/5P) = -0.000070
     s(3D/3D) =  1.000000  <r> =   0.3347  <r2> =    0.1333  r(max) =   0.2668
     s(3D/4D) = -0.000427
     s(4D/4D) =  1.000000  <r> =   1.2895  <r2> =    2.0329  r(max) =   0.9790
     s(5S/5S) =  1.000000  <r> =   2.8995  <r2> =    9.7602  r(max) =   2.3486
     s(5P/5P) =  1.000000  <r> =   4.5626  <r2> =   25.1924  r(max) =   3.3328

     -------------------- End of All-electron run ----------------------


     --------------- Generating NC pseudopotential ---------------


      Generating local potential, lloc=    1


      Wfc   4D  rcut= 1.600  Using Troullier-Martins method 
      This function has    0 nodes for 0 < r <    1.614


      Wfc   5S  rcut= 2.400  Using Troullier-Martins method 
      This function has    0 nodes for 0 < r <    2.408

     ------------ End of pseudopotential generation --------------------

     -------------------- All-electron run ------------------------------

                                                                                
     scalar relativistic calculation

     atomic number is 48.00
     dft =PBE   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1239 r(mesh) =  99.86297 xmin = -7.00 dx = 0.01250

     n l     nl                  e(Ryd)         e(Ha)          e(eV)
     1 0     1S 1( 2.00)     -1949.6083      -974.8041    -26525.9804
     2 0     2S 1( 2.00)      -289.4415      -144.7208     -3938.0838
     2 1     2P 1( 6.00)      -259.7080      -129.8540     -3533.5349
     3 0     3S 1( 2.00)       -53.9458       -26.9729      -733.9754
     3 1     3P 1( 6.00)       -44.1926       -22.0963      -601.2753
     4 0     4S 1( 2.00)        -7.7848        -3.8924      -105.9183
     4 1     4P 1( 6.00)        -4.9220        -2.4610       -66.9676
     3 2     3D 1(10.00)       -28.9318       -14.4659      -393.6408
     4 2     4D 1(10.00)        -0.8624        -0.4312       -11.7330
     5 0     5S 1( 2.00)        -0.4159        -0.2080        -5.6593
     5 1     5P 1( 0.00)        -0.0870        -0.0435        -1.1835

     eps = 8.6E-15  iter = 32
 
     Etot =  -11189.313006 Ry,   -5594.656503 Ha, -152239.554894 eV

     Ekin =   11643.488224 Ry,    5821.744112 Ha,  158418.972082 eV
     Encl =  -27054.240915 Ry,  -13527.120457 Ha, -368094.591037 eV
     Eh   =    4530.042716 Ry,    2265.021358 Ha,   61634.855179 eV
     Exc  =    -308.603031 Ry,    -154.301515 Ha,   -4198.791118 eV
     Evxt =       0.000000 Ry,       0.000000 Ha,       0.000000 eV
     Epseu=       0.000000 Ry,       0.000000 Ha,       0.000000 eV


     normalization and overlap integrals

     s(1S/1S) =  1.000000  <r> =   0.0304  <r2> =    0.0012  r(max) =   0.0196
     s(1S/2S) = -0.012089
     s(1S/3S) = -0.005018
     s(1S/4S) = -0.002184
     s(1S/5S) = -0.000592
     s(2S/2S) =  1.000000  <r> =   0.1317  <r2> =    0.0204  r(max) =   0.1112
     s(2S/3S) = -0.003067
     s(2S/4S) = -0.001287
     s(2S/5S) = -0.000347
     s(2P/2P) =  1.000000  <r> =   0.1149  <r2> =    0.0161  r(max) =   0.0888
     s(2P/3P) = -0.002505
     s(2P/4P) = -0.000969
     s(2P/5P) = -0.000165
     s(3S/3S) =  1.000000  <r> =   0.3583  <r2> =    0.1468  r(max) =   0.3259
     s(3S/4S) = -0.000854
     s(3S/5S) = -0.000226
     s(3P/3P) =  1.000000  <r> =   0.3571  <r2> =    0.1480  r(max) =   0.3178
     s(3P/4P) = -0.000709
     s(3P/5P) = -0.000118
     s(4S/4S) =  1.000000  <r> =   0.8791  <r2> =    0.8757  r(max) =   0.7916
     s(4S/5S) = -0.000136
     s(4P/4P) =  1.000000  <r> =   0.9602  <r2> =    1.0567  r(max) =   0.8427
     s(4P/5P) = -0.000070
     s(3D/3D) =  1.000000  <r> =   0.3347  <r2> =    0.1333  r(max) =   0.2668
     s(3D/4D) = -0.000427
     s(4D/4D) =  1.000000  <r> =   1.2895  <r2> =    2.0329  r(max) =   0.9790
     s(5S/5S) =  1.000000  <r> =   2.8995  <r2> =    9.7602  r(max) =   2.3486
     s(5P/5P) =  1.000000  <r> =   4.5626  <r2> =   25.1924  r(max) =   3.3328

     -------------------- End of All-electron run ----------------------


     -------------- Testing the pseudopotential ------------------------

                                                                                
     scalar relativistic calculation

     atomic number is 48.00
     dft =PBE   lsd =0 sic =0 latt =0  beta=0.20 tr2=1.0E-14
     mesh =1239 r(mesh) =  99.86297 xmin = -7.00 dx = 0.01250

     n l     nl             e AE (Ryd)       e PS (Ryd)   De AE-PS (Ryd) 
     3 2     4D   1(10.00)       -0.86235       -0.86236        0.00001
     1 0     5S   1( 2.00)       -0.41595       -0.41595        0.00000
     2 1     5P   1( 0.00)       -0.08698       -0.08698        0.00000

     eps = 3.1E-15  iter = 11
 
     Etot =  -11189.313006 Ry,   -5594.656503 Ha, -152239.554894 eV
     Etotps =   -92.421596 Ry,     -46.210798 Ha,   -1257.469751 eV
     dEtot_ae =       0.000000 Ry
     dEtot_ps =     -92.421596 Ry,   Delta E=      92.421596

     Ekin =      67.123154 Ry,      33.561577 Ha,     913.264211 eV
     Encl =       0.000000 Ry,       0.000000 Ha,       0.000000 eV
     Ehrt =      86.884433 Ry,      43.442217 Ha,    1182.132224 eV
     Ecxc =     -13.149358 Ry,      -6.574679 Ha,    -178.907541 eV
     Evxt =       0.000000 Ry,       0.000000 Ha,       0.000000 eV
     Epseu=    -233.279825 Ry,    -116.639913 Ha,   -3173.958644 eV

     -------------- End of pseudopotential test ------------------------



More information about the users mailing list