<html><body><div style="font-family: arial, helvetica, sans-serif; font-size: 12pt; color: #000000"><div>Dear all Wannier users,<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>I am quite new to Wannier90 and I am mostly performing electrical conductivity calculations using the BoltzWann module. I have followed the tutorial (example 16) on the computation of Boltzmann conductivity tensor for Silicon. </div><div><br data-mce-bogus="1"></div><div>I attached the results I obtained for a 10 fs relaxation time as '<em>boltz_relax_time</em>' Boltzwann parameter. </div><div><br data-mce-bogus="1"></div><div>The order of magnitude of the largest conductivity component is <em>10^5 to 10^7</em> S/m, if I was not mistaken in the previous calculations using Quantum Espresso (I used the default parameters  provided in the example16/ repository as input filesfor SCF and NSCF calculations). </div><div><br data-mce-bogus="1"></div><div>I am very surprised, as I was expecting something of order 10^{-3}  S/m, for the conductivity of Silicon, which is a semiconductor. Increasing more the relaxation time to 100 fs roughly produces a tenfold increase, accordingly to the scaling factor of the relaxation time, on the conductivity, which happens to be even larger, or order 10^8 S/m ; and farther away from the experimental conductivity.<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>In all cases, as far as I know, relaxation times in most solids (metals/semiconductors) range from a few fs to about 1000 fs -- that high, at low temperature and for some low dimensional materials--  and in this range I cannot reproduce a conductivity of order 10^{-3}, about 10 orders of magnitude smaller than what I found.<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>Also for a carbon nanotube (which I am interested in in the end, comparing the BoltzWann room T conductivity for defected CNTs / CNTs with adsorbed ions, to the conductivity of the perfect, pristine CNT) provided in example15, I obtain the same order of magnitude for the Boltzmann conductivity of the (5,5) metallic CNT of about 10^6 S/m.(while rather expecting from 0.5-5 * 10^{2} S/m).<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>Most probably I am missing a very basis subtlety in the input parameters or the code using, that prevents me from recovering the correct orders of magnitude. That is why I kindly request your help.<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>Thank you very much for your help,<br data-mce-bogus="1"></div><div>Best regards,<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div>Robert BENDA<br data-mce-bogus="1"></div><div>PhD student, CERMICS (ENPC) and Ecole Polytechnique (FRANCE)<br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div><div><br data-mce-bogus="1"></div></div></body></html>