<html dir="ltr">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style id="owaParaStyle" type="text/css">P {margin-top:0;margin-bottom:0;}</style>
</head>
<body ocsi="0" fpstyle="1" class="" style="word-wrap:break-word">
<div style="direction: ltr;font-family: Tahoma;color: #000000;font-size: 10pt;">Dear all,
<br>
somebody suggested me to use "use_ws_distance = .true.". This seems to have solved the problem with the broken Kramers degeneracy.
<br>
<br>
Thanks to everybody who gave me suggestions. <br>
<br>
Best, <br>
Irene<br>
<div><br>
<br>
</div>
<div style="font-family: Times New Roman; color: #000000; font-size: 16px">
<hr tabindex="-1">
<div style="direction: ltr;" id="divRpF289302"><font face="Tahoma" color="#000000" size="2"><b>From:</b> Aguilera, Irene<br>
<b>Sent:</b> Wednesday, June 21, 2017 2:32 PM<br>
<b>To:</b> wannier@quantum-espresso.org<br>
<b>Subject:</b> Kramers degeneracy broken by Wannier interpolation<br>
</font><br>
</div>
<div></div>
<div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">Dear all,</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">this is a general question about the Wannier interpolation technique. I'm using wannier90 to perform a Wannier interpolation for a system with inversion symmetry (IS), time-reversal (TRS) symmetry, and spin-orbit coupling. Therefore,
all states must be doubly degenerate (Kramers pairs). The interpolated band structure is in excellent agreement with the explicitly calculated one (DFT or GW). The construction of the Wannier functions seems correct and the bands at the k points which are
present in the explicit DFT or GW calculation are indeed doubly degenerate. But this is not the case for the arbitrary k points (q) at which the bands are interpolated. For those q points there is a small splitting between the Kramers partners. I do understand
the following:</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">In order for the Kramers degneracy to be preserved, the Hamiltonian has to be invariant with respect to a certain symmetry operation (IS+TRS in this case):</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">H(k) = S^T(k)*H(k)*S(k)</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">where S(k) is the corresponding transformation matrix. This transformation matrix is k-dependent. For the explicit k points, the above condition is fulfilled. For an interpolated q point, we would have to demand</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">H(q) = S^T(q)*H(q)*S(q) (*)</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">However, in the Wannier interpolation, H(q) is a linear combination of the H(k):</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">H(q) = SUM(k) c(q,k) H(k)</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">with some coefficients c(q,k).</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">This probably leads to the fact that, because of the k dependence of S(k), the requirement (*) is not fulfilled (in general), and therefore the degeneracy is lifted.</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">So, I think I understand why this happens and I understand how to improve it and make the splitting negligible (increasing the k points in the DFT calculation does it). But I cannot find a solution to obtain real degeneracies and I could
not find discussions about this issue in the literature or in the forum.</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">Are there approaches to solve this problem? How can one symmetrize H(q)? Can one impose some conditions on H(R) (the Hamiltonian in real space) such that H(q) presents the correct symmetries?</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255); min-height:13px">
<span class="" style=""></span><br class="">
</div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">Thank you very much.</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">Best regards,</span></div>
<div class="" style="margin:0px; font-size:11px; line-height:normal; font-family:Menlo; background-color:rgb(255,255,255)">
<span class="" style="">Irene</span></div>
<div class=""><span class="" style=""><br class="">
</span></div>
</div>
</div>
</div>
<br>
<font face="Arial" color="Black" size="1"><br>
------------------------------------------------------------------------------------------------<br>
------------------------------------------------------------------------------------------------<br>
Forschungszentrum Juelich GmbH<br>
52425 Juelich<br>
Sitz der Gesellschaft: Juelich<br>
Eingetragen im Handelsregister des Amtsgerichts Dueren Nr. HR B 3498<br>
Vorsitzender des Aufsichtsrats: MinDir Dr. Karl Eugen Huthmacher<br>
Geschaeftsfuehrung: Prof. Dr.-Ing. Wolfgang Marquardt (Vorsitzender),<br>
Karsten Beneke (stellv. Vorsitzender), Prof. Dr.-Ing. Harald Bolt,<br>
Prof. Dr. Sebastian M. Schmidt<br>
------------------------------------------------------------------------------------------------<br>
------------------------------------------------------------------------------------------------<br>
<br>
</font>
</body>
</html>