<div dir="ltr">Dear Farideh,<div><br></div><div>If you need to perform really large scale transport calculations I can also refer to TBtrans (part of the SIESTA DFT suite).</div><div>TBtrans is now a "stand-alone" program capable of calculating transport of user-defined tight-binding parameter sets (and also phonon transport).</div><div>It implements highly efficient algorithms (only sub-diagonal matrix operations, no full matrix operations) and is furthermore capable of calculating bond-currents among many other things.</div><div><br></div><div>Currently you can use sisl (<a href="https://github.com/zerothi/sisl" target="_blank">https://github.com/zerothi/<wbr>sisl</a>) to read in the tight-binding hamiltonian from Wannier90 output (*_hr.dat), and from there write it to a readable format for TBtrans.</div><div><br></div><div>TBtrans and its capabilities are recently published in this paper (see Sec. 4):</div><div><a href="http://www.sciencedirect.com/science/article/pii/S001046551630306X" target="_blank">http://www.sciencedirect.com/<wbr>science/article/pii/<wbr>S001046551630306X</a></div><div>which also highlights that it is capable of N>=1 electrode calculations, if so desired. Thus using Wannier90 to generate tight-binding sets for N-electrode transport calculations is possible.</div><div><br></div><div>Due to TBtrans efficiency we are periodically doing calculations of tight-binding systems exceeding 400,000 orbitals (the capabilities are system-shape dependent) for bond-current calculations, and >1,000,000 orbitals for transport-only calculations.</div><div>Also, TBtrans is hybrid parallelised using MPI + OpenMP.</div><div><br></div><div>Disclaimer, I am the developer of the latest TBtrans and sisl.</div><div><br></div><div>Hope this may help you if needed.</div><div><br></div><div class="gmail_extra"><br><div class="gmail_quote">2017-04-06 12:18 GMT+02:00 Mostofi, Arash <span dir="ltr"><<a href="mailto:a.mostofi@imperial.ac.uk" target="_blank">a.mostofi@imperial.ac.uk</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">



<div style="word-wrap:break-word">
Dear Farideh,
<div><br>
</div>
<div>There are several points at which limitations may apply:</div>
<div><br>
</div>
<div>+ The underlying electronic structure calculation: a 500 atom DFT simulation would need significant computational resources</div>
<div><br>
</div>
<div>+ Generating the Wannier function basis: for transport calculations you would most likely want to use the disentanglement algorithms to obtain an atom-centred WF basis; for a 500 atom system I expect that this would need some careful thought and
 effort to do successfully (see my earlier post about projections and energy windows)</div>
<div><br>
</div>
<div>+ Computing the quantum conductance: the matrix operations (in particular the matrix inversions) in the Landauer transport code are not parallelised yet so the amount of memory attached to your processor will determine whether this is possible.
 A 500 atom “conductor” region, assuming 4 Wannier functions per atom, would give you a 2,000 x 2,000 matrix to be inverted for example.</div>
<div><br>
</div>
<div>Best wishes,</div>
<div><br>
</div>
<div>Arash</div>
<div><br>
<div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
— <br>
Arash Mostofi — <a href="http://www.mostofigroup.org" target="_blank">www.mostofigroup.org</a><br>
Director, CDT in Theory and Simulation of Materials<br>
Imperial College London</div>
<div style="color:rgb(0,0,0);font-family:Helvetica;font-size:12px;font-style:normal;font-variant-caps:normal;font-weight:normal;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
<br>
</div>
<br class="m_-5050673677037150012m_-193176020777730552Apple-interchange-newline">
</div>
<br>
<div>
<blockquote type="cite"><div><div class="m_-5050673677037150012h5">
<div>On 5 Apr 2017, at 14:08, Faride Hajiheidari <<a href="mailto:hajiheidari.faride@gmail.com" target="_blank">hajiheidari.faride@gmail.com</a>> wrote:</div>
<br class="m_-5050673677037150012m_-193176020777730552Apple-interchange-newline">
</div></div><div><div><div class="m_-5050673677037150012h5">
<div dir="ltr">
<div>
<div>
<div>
<div>
<div>
<div>
<div>Dear all,<br>
<br>
</div>
I would like to start the transport calculations with Wannier90. My systems are double-walled carbon nanotubes (DWCNTs) with the maximum 500 atoms per unit cell.
<br>
</div>
My question is if there is a limit size for the system that can be studied by Wannier90 approach in the most efficient way.
<br>
<br>
<br>
</div>
Many thanks in advance, <br>
</div>
Farideh<br>
<br>
<br>
<br>
------------------------------<wbr>---<br>
</div>
Farideh Hajiheidari<br>
</div>
RWTH Aachen University<br>
</div>
Institute for theoretical solid state physics<br>
<br>
</div></div></div>
______________________________<wbr>_________________<br>
Wannier mailing list<br>
<a href="mailto:Wannier@quantum-espresso.org" target="_blank">Wannier@quantum-espresso.org</a><br>
<a href="http://mailman.qe-forge.org/cgi-bin/mailman/listinfo/wannier" target="_blank">http://mailman.qe-forge.org/cg<wbr>i-bin/mailman/listinfo/wannier</a><br>
</div>
</blockquote>
</div>
<br>
</div>
</div>

<br>______________________________<wbr>_________________<br>
Wannier mailing list<br>
<a href="mailto:Wannier@quantum-espresso.org" target="_blank">Wannier@quantum-espresso.org</a><br>
<a href="http://mailman.qe-forge.org/cgi-bin/mailman/listinfo/wannier" rel="noreferrer" target="_blank">http://mailman.qe-forge.org/cg<wbr>i-bin/mailman/listinfo/wannier</a><br>
<br></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="m_-5050673677037150012gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div>Kind regards Nick</div></div></div>
</div></div>