<div dir="ltr">Hi<br>I performed the minimization procedure for the 24 topmost valence bands of my system. The resulting WFs have the spreads<br><br>1.18495  1.18450  1.13896<br>1.18495  1.18450  1.13895<br>1.18494  1.18449  1.13895<br>1.18492  1.18449  1.13892<br>1.18492  1.18449  1.13892<br>1.18490  1.18448  1.13889<br>1.18489  1.18448  1.13888<br>1.18489  1.18448  1.13888<br><br>Near the VB maximum, there should be 16 states of O 2p character, and toward the VB bottom, there should be 8 states that are also of mainly O 2p character, but have some mixture of W 5d states. By taking the sqrt of each spread and averaging, I can say that the states in the lower half of the VB are more localized (1.067) than in the upper half (1.088). However, In several papers I've seen the localization length defined as the sqrt of the total spread, divided by the number of states. By that logic, the upper half of the VB would be more localized (sqrt(sum over the selected spreads)/16=0.272) than the lower half in my system (0.377).<br><br>I'm confused over exactly what the spreads represent. Is it reasonable to speak of the localization length of each WF separately?<br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr">Raul Laasner<br>Institute of Physics<br>University of Tartu<br>Ravila 14c, 50411, Tartu, Estonia<br><br></div></div></div></div></div></div>
</div>