
wherever higher unoccupied and unwanted states possessing
some significant sp3 character are admixed into the projected
manifold. This behavior can be avoided by forcing certain
Bloch states to be preserved identically in the projected
manifold; we refer to those as belonging to a frozen ‘‘inner’’
window, since this is often the simplest procedure for select-
ing them. The placement and range of this frozen window
will depend on the problem at hand. For example, in order to
describe the low-energy physics for, e.g., transport calcula-
tions, the frozen window would typically include all states in
a desired range around the Fermi level.

We show as circles in Fig. 5 the results obtained by forcing
the entire valence manifold to be preserved, leading to a set of
eight projected bands that reproduce exactly the four valence
bands, and follow quite closely the four low-lying conduction
bands. For the modifications to the projection algorithm
required to enforce a frozen window, we refer to Sec. III.G
of Souza, Marzari, and Vanderbilt (2001).

Projection techniques can work very well, and an applica-
tion of this approach to graphene is shown in Fig. 6, where the
!=!? manifold is disentangled with great accuracy by a
simple projection onto atomic pz orbitals, or the entire occu-
pied manifold together with the !=!? manifold is obtained
by projection onto atomic pz and sp2 orbitals (one every
other atom, for the case of the sp2 orbitals, although bond-
centered s orbitals would work equally well).

Projection methods have been extensively used to study
strongly correlated systems (Ku et al., 2002; Anisimov et al.,
2005), in particular, to identify a ‘‘correlated subspace’’ for
LDAþU or dynamical mean-field theory (DMFT) calcula-
tions, as will be discussed in more detail in Sec. VII. It has
also been argued (Ku, Berlijn, and Lee, 2010) that projected
WFs provide a more appropriate basis for the study of
defects, as the pursuit of better localization in a MLWF
scheme risks defining the gauge differently for the defect
WF as compared to the bulk. Instead, a straightforward
projection approach ensures the similarity between the WF

in the defect (supercell) and in the pristine (primitive cell)
calculations, and this has been exploited to develop a scheme
to unfold the band structure of disordered supercells into the
Brillouin zone of the underlying primitive cell, allowing a
direct comparison with angle-resolved photoemission spec-
troscopy (ARPES) experiments (Ku, Berlijn, and Lee, 2010).

2. Subspace selection via optimal smoothness

The projection onto trial orbitals provides a simple and
effective way of extracting a smooth Bloch subspace starting
from a larger set of entangled bands. The reason for its
success is easily understood: the localization of the trial
orbitals in real space leads to smoothness in k space. In order
to further refine the subspace selection procedure, it is useful
to introduce a precise measure of the smoothness in k space
of a manifold of Bloch states. The search for an optimally
smooth subspace can then be formulated as a minimization
problem, similar to the search for an optimally smooth gauge.

As it turns out, smoothness in k of a Bloch space is
precisely what is measured by the functional !I introduced
in Sec. II.C.1. We know from Eq. (19) that the quadratic
spread ! of the WFs spanning a Bloch space of dimension J
comprises two positive-definite contributions, one gauge in-

variant (!I), and the other gauge dependent ( ~!). Given such
a Bloch space (e.g., an isolated group of bands, or a group of
bands previously disentangled via projection), we have
seen that the optimally smooth gauge can be found by

minimizing ~! with respect to the unitary mixing of states
within that space.
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FIG. 5 (color online). Band structure of bulk crystalline Si. Solid
lines: Original bands generated directly from a DFT calculation.
Triangles: Wannier-interpolated bands obtained from the subspace
selected by an unconstrained projection onto atomic sp3 orbitals.
Circles: Wannier-interpolated bands obtained with the same proce-
dure and the additional constraint of reproducing exactly the
original valence manifold and parts of the conduction manifold,
using a frozen energy window (see text).

FIG. 6 (color online). Band structure of graphene. Solid lines:
Original bands generated directly from a DFT calculation.
Triangles: Wannier-interpolated bands obtained from the subspace
selected by an unconstrained projection onto atomic pz orbitals.
Circles: Wannier-interpolated bands obtained from the subspace
selected by projecting onto atomic pz orbitals on each atom and
sp2 orbitals on every other atom, and using a frozen energy window.
The lower panels shows the MLWFs obtained from the standard
localization procedure applied to the first or second projected
manifolds (a pz-like MLWF, or a pz-like MLWF and a bond
MLWF, respectively).
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black lines -- regular PBE
red circles -- GW0 + Wannier90 with a frozen energy window
blue triangles -- Wannier90 with a frozen energy window
green lines -- Wannier90 using Bloch states


