<div dir="ltr">Follow up: <div><br></div><div style>I now understand that the normalization factor is not '1' because each WF(n,R) is divided by the largest value whose phase is set to be zero i.e. it is real at this point. But shouldn't the orthogonality still work? unless the Lowdin orthonormalization is missing i.e. eq. 17 in the Marzari et al review of modern physics article. Where is it coded ?</div>
<div style><br></div><div style>I have traced part of the problem to the following lines of code which I believe is wrong in plot.F. This mistake (possibly a typo) kills the periodicity of WF(n,R): </div><div style><br></div>
<div style>current lines in plot.F: </div><div style><br></div><div style><div> scalfac=kpt_latt(1,loop_kpt)*real(nxx-1,dp)/real(ngx,dp)+ &</div><div> kpt_latt(2,loop_kpt)*real(nyy-1,dp)/real(ngy,dp)+ &</div>
<div> kpt_latt(3,loop_kpt)*real(nzz-1,dp)/real(ngz,dp)</div><div><br></div><div style>My suggested change to the above:</div><div style><div> scalfac=kpt_latt(1,loop_kpt)*real(nx-1,dp)/real(ngx,dp)+ &</div>
<div> kpt_latt(2,loop_kpt)*real(ny-1,dp)/real(ngy,dp)+ &</div><div> kpt_latt(3,loop_kpt)*real(nz-1,dp)/real(ngz,dp)</div></div><div style><br></div><div style>This I have confirmed brings back the periodicity of the wannier functions. Can one of the authors please confirm the correctness (or wrongness) of my suggestion? </div>
<div style><br></div><div style>I failed to mention that I am using VASP for the ab initio part. </div><div style><br></div><div style>Thanks,</div><div style>Ganesh</div><div style><br></div><div style><br></div><div><br>
</div></div></div><div class="gmail_extra"><br><br><div class="gmail_quote">On Tue, Jan 22, 2013 at 1:26 PM, Ganesh Panchapakesan <span dir="ltr"><<a href="mailto:gpanchap@gmail.com" target="_blank">gpanchap@gmail.com</a>></span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear All,<div><br></div><div>Does anyone know if it is possible to transform the current h(r) matrix elements, which is in the WF-basis, to (say an atom centered) atomic-orbital basis within wannier90? The transformation might be lossy (i.e. it might be a projection) depending on the system of course, but would be good to compare with other TB-fitting codes which use such atomic-orbital basis to represent the Hamiltonian. </div>
<div><br></div><div>Also, in the current wannier90 code, I supposed the WFs are orthogonal in the unit cell due to periodicity i.e. WF(n,R)(r) = WF(n,0)(r-R). But I don't see that when I print the sum(wf(nx,ny,nz,wan_ind)*conjg(wf(nx,ny,nz,wan_ind)), where {n} is the real space grid inside the wannier_plot_supercell, which is '1' in my test case i.e. the unit cell. What am I missing, is the sum needed over the supercell corresponding to the k-mesh i.e. {n} is {kx,ky,kz}?</div>
<div><br></div><div>Thanks.</div><span class="HOEnZb"><font color="#888888"><div>Ganesh</div><div><br></div></font></span></div>
</blockquote></div><br></div>