<div dir="ltr">Dear All<div><br></div><div>Recently, I am doing a calculation with a system consisting of Mo2C which is immersed in 1M NaCl(aq) solvent.  I use ESM-RISM to construct the system. The system is introduced by a variety of charge doping, eg. -0.15e, 0.0e, and +0.15e, and the fermi level is obtained -5.07 eV, -4.91 eV, and -5.42 eV respectively.  </div><div><br></div><div>Something I still don't understand is why the fermi level with charge doping of -0.15e is lower compared to that of the neutral system (0.0e). </div><div>Do you have any suggestions?</div><div>Can anyone help me to check my input file?</div><div><br></div><div>The followings is  the input file</div><div><br></div><div>Thank you</div><div><br></div><div><br></div><div><br></div><div>================INPUT FILE==================</div><div>&control<br>calculation  = 'scf'<br>prefix       = 'mo2c-nacl'<br>pseudo_dir = '/home/k0171/k017129/qe-6.7-rism/pseudo/SSSP_1.3.0_PBE_efficiency/'<br>outdir       = '.'<br>trism        = .true.<br>/<br>&system<br>ibrav = 0,<br>nat= 3, ntyp= 2,<br>ecutwfc = 60, ecutrho = 480<br>occupations = 'smearing', smearing = 'mp', degauss = 0.01<br>assume_isolated = "esm", esm_bc = "bc1", tot_charge = -0.1500<br>noncolin = .TRUE.<br>lspinorb = .TRUE.<br>/<br>&electrons<br>electron_maxstep = 800<br>conv_thr = 1.D-8<br>mixing_beta = 0.1<br>diagonalization = 'rmm', diago_rmm_conv = .false., diago_rmm_ndim = 4<br>/<br>&rism<br>nsolv    = 3, closure  = 'kh'<br>tempv    = 300.0  ! Kelvin<br>ecutsolv = 240  ! Rydberg<br>!<br>! Lennard-Jones for each atom<br>!<br>! For Mo using universal force field<br>solute_lj(1) = 'none'<br>solute_epsilon(1) = 0.056<br>solute_sigma(1) = 3.052<br><br>! For Mo using universal force field<br>solute_lj(2) = 'none'<br>solute_epsilon(2) = 0.056<br>solute_sigma(2) = 3.052<br><br>! For C using universal force field<br>solute_lj(3) = 'none'<br>solute_epsilon(3) = 0.105<br>solute_sigma(3) = 3.851<br>!<br>! 1D-RISM's setting<br>!<br>starting1d      = 'zero'<br>rism1d_conv_thr = 1.0e-8<br>rism1d_maxstep  = 10000<br>mdiis1d_size    = 20<br>mdiis1d_step    = 0.5<br>!<br>! 3D-RISM's setting<br>!<br>starting3d      = 'zero'<br>rism3d_maxstep  = 10000<br>rism3d_conv_thr = 1.0e-6<br>!<br>! For Laue-RISM calculation<br>! in a.u.<br>!<br>laue_expand_right = 100.0<br>laue_starting_right = 8.56238<br>/<br>ATOMIC_SPECIES<br>Mo  95.95   Mo.pbe-spn-kjpaw.UPF<br>C   12.01   C.pbe-n-kjpaw.UPF<br><br>CELL_PARAMETERS angstrom<br>2.94093  0.00000  0.00000<br>-1.46252  2.55020  0.00000<br>0.00000  0.00000 60.03555<br><br>ATOMIC_POSITIONS angstrom<br>Mo    0.00874  1.69915  6.05908<br>Mo    1.46923  0.85024  8.56238<br>C    0.00000  0.00000  7.31064<br><br><br>K_POINTS automatic<br>  10 10 1 1 1 0<br>         <br>SOLVENTS {mol/L}<br>H2O  -1.0  H2O.spc.MOL<br>Na+   1.0  Na+.aq.MOL<br>Cl-   1.0  Cl-.aq.MOL<br>================================================</div><div><br></div><div><br></div><div>===================H2O.spc.MOL====================</div><div><MOL version="1.0.0"><br>  <!--<br>    Copyright (C) 2015 Satomichi Nishihara [<a href="mailto:nisihara225@gmail.com" target="_blank">nisihara225@gmail.com</a>]<br>  --><br>  <MOL_INFO><br>    Simple Point Charge(SPC) model of Water,<br>    although Lennad-Jones parameters of hydrogen are modified.<br>    (M.Matsugami et al., J. Chem. Phys. 2014, 140, 104511)<br>  </MOL_INFO><br>  <MOL_HEADER author="S.Nishihara"<br>              date="13Apr2015"<br>              comment="SPC(Water)"<br>              formula="H2O"<br>              has_charge="T"<br>              has_lj="T"<br>              number_of_atoms="3"/><br>  <MOL_MASS type="real" size="1" columns="1" UNITS="g/mol"><br>    18.01528<br>  </MOL_MASS><br>  <MOL_DENSITY type="real" size="1" columns="1" UNITS="g/cm^3"><br>    0.999972<br>  </MOL_DENSITY><br>  <MOL_PERMITTIVITY type="real" size="1" columns="1"><br>    78.3553<br>  </MOL_PERMITTIVITY><br>  <MOL_ELEMENT type="character" size="3" columns="1" len="5"><br>O/h2o<br>H/h2o<br>H/h2o<br>  </MOL_ELEMENT><br>  <MOL_XYZ type="real" size="9" columns="3" UNITS="angstrom"><br>     0.00000  0.00000  0.00000<br>     0.81649  0.57736  0.00000<br>    -0.81649  0.57736  0.00000<br>  </MOL_XYZ><br>  <MOL_CHARGE type="real" size="3" columns="1"><br>    -0.8200<br>    +0.4100<br>    +0.4100<br>  </MOL_CHARGE><br>  <MOL_LJ><br>    <MOL_EPSILON type="real" size="3" columns="1" UNITS="kcal/mol"><br>      0.1554<br>      0.0460<br>      0.0460<br>    </MOL_EPSILON><br>    <MOL_SIGMA type="real" size="3" columns="1" UNITS="angstrom"><br>      3.1660<br>      1.0000<br>      1.0000<br>    </MOL_SIGMA><br>  </MOL_LJ><br></MOL><br></div><div>==================================================</div><div><br></div><div>===================Na+.aq.MOL====================</div><div><MOL version="1.0.0"><br>  <!--<br>    Copyright (C) 2015 Satomichi Nishihara [<a href="mailto:nisihara225@gmail.com" target="_blank">nisihara225@gmail.com</a>]<br>  --><br>  <MOL_INFO><br>    Aqueous sodium ion.<br>    (D.E.Smith et al., J. Chem. Phys. 1994, 100, 3757)<br>  </MOL_INFO><br>  <MOL_HEADER author="S.Nishihara"<br>              date="13Apr2015"<br>              comment="Na+(aq)"<br>              formula="Na+"<br>              has_charge="T"<br>              has_lj="T"<br>              number_of_atoms="1"/><br>  <MOL_MASS type="real" size="1" columns="1" UNITS="g/mol"><br>    22.98977<br>  </MOL_MASS><br>  <MOL_DENSITY type="real" size="1" columns="1" UNITS="mol/L"><br>    1.0<br>  </MOL_DENSITY><br>  <MOL_PERMITTIVITY type="real" size="1" columns="1"><br>    0.0<br>  </MOL_PERMITTIVITY><br>  <MOL_ELEMENT type="character" size="1" columns="1" len="2"><br>Na<br>  </MOL_ELEMENT><br>  <MOL_XYZ type="real" size="3" columns="3" UNITS="angstrom"><br>     0.00000  0.00000  0.00000<br>  </MOL_XYZ><br>  <MOL_CHARGE type="real" size="1" columns="1"><br>    +1.0000<br>  </MOL_CHARGE><br>  <MOL_LJ><br>    <MOL_EPSILON type="real" size="1" columns="1" UNITS="kcal/mol"><br>      0.1301<br>    </MOL_EPSILON><br>    <MOL_SIGMA type="real" size="1" columns="1" UNITS="angstrom"><br>      2.3500<br>    </MOL_SIGMA><br>  </MOL_LJ><br></MOL><br><br>=================================================</div><div><br></div><div><br>===================Cl-.aq.MOL====================</div><div><MOL version="1.0.0"><br>  <!--<br>    Copyright (C) 2015 Satomichi Nishihara [<a href="mailto:nisihara225@gmail.com" target="_blank">nisihara225@gmail.com</a>]<br>  --><br>  <MOL_INFO><br>    Aqueous chloride ion.<br>    (D.E.Smith et al., J. Chem. Phys. 1994, 100, 3757)<br>  </MOL_INFO><br>  <MOL_HEADER author="S.Nishihara"<br>              date="13Apr2015"<br>              comment="Cl-(aq)"<br>              formula="Cl-"<br>              has_charge="T"<br>              has_lj="T"<br>              number_of_atoms="1"/><br>  <MOL_MASS type="real" size="1" columns="1" UNITS="g/mol"><br>    35.4527<br>  </MOL_MASS><br>  <MOL_DENSITY type="real" size="1" columns="1" UNITS="mol/L"><br>    1.0<br>  </MOL_DENSITY><br>  <MOL_PERMITTIVITY type="real" size="1" columns="1"><br>    0.0<br>  </MOL_PERMITTIVITY><br>  <MOL_ELEMENT type="character" size="1" columns="1" len="2"><br>Cl<br>  </MOL_ELEMENT><br>  <MOL_XYZ type="real" size="3" columns="3" UNITS="angstrom"><br>     0.00000  0.00000  0.00000<br>  </MOL_XYZ><br>  <MOL_CHARGE type="real" size="1" columns="1"><br>    -1.0000<br>  </MOL_CHARGE><br>  <MOL_LJ><br>    <MOL_EPSILON type="real" size="1" columns="1" UNITS="kcal/mol"><br>      0.1001<br>    </MOL_EPSILON><br>    <MOL_SIGMA type="real" size="1" columns="1" UNITS="angstrom"><br>      4.4000<br>    </MOL_SIGMA><br>  </MOL_LJ><br></MOL><br>==================================================</div><div><br></div><div><br></div><div><br></div><div>Best regards</div><font color="#888888"><font color="#888888"><div>Ahmad Sohib</div></font></font></div>