<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Dear
</span><span style="letter-spacing: normal; font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; font-weight: 400; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);">Eduardo</span><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">,</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Your questions are tricky. There is a lot one can say. Please see my comments below.
 Maybe someone else can have a different viewpoint and comment as well.</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":4}" style="margin-block: 0px;">
<li style="font-family: Arial, Helvetica, sans-serif; font-size: 16px; list-style-type: "➢ "; color: rgb(0, 0, 0);">
<span style="letter-spacing: normal; font-family: Arial, Helvetica, sans-serif; font-size: 16px; font-weight: 400; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);">Should we choose one average value, or use the computed value for each system?</span><span style="font-family: Arial, Helvetica, sans-serif; font-size: 16px; color: rgb(0, 0, 0);"><br>
</span></li></ul>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
Both options are used in the literature. From my experience, it is better to use the second one. </div>
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":2}" style="margin-block: 0px;">
<li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">In DFT+U with empirical U people often use one value and compare the total energies. Why? One reason is because
 how would you choose different U values for different systems (e.g. FM vs AFM)? Maybe this can be done, but it is easier to use one empirical value. And it is claimed that the total energies must be compared with the same U value. But why? Is there a theorem
 or a proof? See below for the discussion why I would not use the same U value.</span></li><li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">In the second case, one uses different U values for different structures, provided that these U value are computed
 ab initio. Does this make sense? At least to me, yes. Why? Because different structures require different corrections. And, indeed, if one computes U e.g. for the Co-3d states in LiCoO2 and CoO2, the U values appear to be different. Why? Because the electronic
 screening is different, and the magnitude of self-interaction errors is different in LiCoO2 and CoO2. One can make an approximation and use an average U value for these two systems, but why doing so? From our experience using different ab initio U values and
 comparing total energies gives results in good agreement with experiments (e.g. voltages for batteries). But we do not have a (mathematical) justification for doing so, as well as we do not have a proof why one should not do it. Hence, at present there is
 no consensus in the literature on this topic. More investigations for various systems is needed to see trends. But for me, comparing total energies with different U values obtained from linear-response theory makes sense and it provides reasonable results. </span></li></ul>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":4}" style="margin-block: 0px;">
<li style="font-family: Arial, Helvetica, sans-serif; font-size: 16px; list-style-type: "➢ "; color: rgb(0, 0, 0);">
<span style="letter-spacing: normal; font-family: Arial, Helvetica, sans-serif; font-size: 16px; font-weight: 400; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);">Concerning the advantage of self consistency, let me rise the example LiCoO2 that
 comes with the HP code. The example produces U for Co and also for O, as well as V(Co-O). U(O-2p)=8.0439 eV. Is this parameter useful? As the example is not converged w.r.t. to k-points and cutoffs the number may change, but U(O-2p) is still there. I read
 PRB101, 064305 (2020) by Floris et al, and it seems that U(O-2p) is discarded. I am curious why, but I couldn't find a discussion. Maybe there is another article. My point here is that using self consistent parameters for some elements and shells, and discarding
 others is just a partial self-consistency.</span><span style="font-family: Arial, Helvetica, sans-serif; font-size: 16px; color: rgb(0, 0, 0);"><br>
</span></li></ul>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div class="elementToProof" style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
We did not apply the U correction to O-2p states. The question of whether to apply or not the U correction to O-2p is another big question. Many things can be said here, and you will possibly receive different answers from different people. A few comments from
 my side:</div>
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":2}" style="margin-block: 0px;">
<li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">We generally do not apply U to O-2p, when U is computed from linear-response theory, because it is large (8-9 eV)
 and from our experience the accuracy of some properties (e.g. voltages) are worsened. </span></li><li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">If you use ACBN0 to compute U, you might get 2-3 eV, and applying this correction to O-2p might improve the results.
 So you see that it matters which value of U to apply to O-2 states and how it was computed. If one tunes U by hand, then of course you can get whatever you want. E.g. people apply empirical U to O-2p states in ZnO to get the right band gap. But this touches
 on another topic: DFT+U for band gaps. U generally improves the band gaps if the correction is applied to the edge states. Have a look at this paper:
<a href="https://www.mdpi.com/2076-3417/11/5/2395" id="LPlnk237151">https://www.mdpi.com/2076-3417/11/5/2395</a></span></li><li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">In some works, even U from linear-response theory is applied to O-2p to get better band gaps.</span></li><li style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; list-style-type: "- "; color: rgb(0, 0, 0);" class="elementToProof">
<span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Applying U to O-2p localizes these states more. Is it good or bad? It depends on the system. E.g. in systems with
 strong covalency, this is not good as you will kill the hybridization between TM-3d and O-2p states. E.g. in the case of BaTiO3 applying U to O-2p does exactly that and one gets the cubic phase instead of the rhombohedral one, in contradiction to experiments.
 While not applying U to O-2p is ok, because the inter-site hybridization is there and the DFT+U+V approach preserves the rhombohedral symmetry:
<a href="https://arxiv.org/abs/2309.04348" id="LPNoLPOWALinkPreview">https://arxiv.org/abs/2309.04348</a> </span></li></ul>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":4}" style="margin-block: 0px;">
<li style="font-family: Arial, Helvetica, sans-serif; font-size: 12pt; list-style-type: "➢ "; color: black;">
<span style="letter-spacing: normal; font-family: Arial, Helvetica, sans-serif; font-size: 12pt; font-weight: 400; color: black;">A related question is whether the forces and energies are consistent with variable U and V. That is, Let us move the Fe impurity
 atom inside a crystal, and recompute the U and V for each position.  Force is the gradient of energy obtained in the Hellman-Feynman way, I guess with constant U,V.</span><span style="font-family: Arial, Helvetica, sans-serif; font-size: 12pt; color: black;"><br>
</span></li></ul>
<div style="margin: 0px; background-color: rgb(255, 255, 255);">
<ul data-editing-info="{"orderedStyleType":1,"unorderedStyleType":4}" style="text-align: left; margin-block: 0px; flex-direction: column; display: flex;">
<li style="font-family: Arial, Helvetica, sans-serif; font-size: 12pt; align-self: start; list-style-type: "➢ "; color: black;">
<span style="letter-spacing: normal; font-family: Arial, Helvetica, sans-serif; font-size: 12pt; font-weight: 400; color: black;">Pressure is the negative of the derivative of the energy with respect to volume, which implies a variation of U and V. I guess
 the stress is computed with constant U, V. I think that self-consistency could be implemented, but first we must be sure that comparing energies with variable, self-consistent parameters is correct.</span><span style="font-family: Arial, Helvetica, sans-serif; font-size: 12pt; color: black;"><br>
</span></li></ul>
</div>
<div><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Another excellent question. In Quantum ESPRESSO, U is constant and its derivative dU/dR is set to zero when
 computing Hubbard forces (and same for Hubbard stresses): <a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.235159" id="LPlnk102046">
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.235159</a></span></div>
<div><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">In order to circumvent this problem, we perform the calculation of U in a self-consistent fashion, by performing
 cyclic calculations (recalculation of U and structural optimization with DFT+U), thus pushing the system to the energy extremum:
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.045141" id="LPlnk685603">
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.045141</a><br>
<br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">HTH</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Greetings,</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">Iurii</span></div>
<div class="elementToProof"><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><br>
</span></div>
<div id="Signature">
<div><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(102, 102, 102);">----------------------------------------------------------</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">Dr. Iurii TIMROV</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">Tenure-track scientist</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">Laboratory for Materials Simulations (LMS)</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">Paul Scherrer Institut (PSI)</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">CH-5232 Villigen, Switzerland</span></div>
<div><span style="font-family: Cambria, Georgia, serif; font-size: 12pt; color: rgb(102, 102, 102);">+41 56 310 62 14</span></div>
<div><span style="font-family: Aptos, Aptos_EmbeddedFont, Aptos_MSFontService, Calibri, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);"><a href="https://www.psi.ch/en/lms/people/iurii-timrov" target="_blank" rel="noopener noreferrer" data-auth="NotApplicable" data-linkindex="0">https://www.psi.ch/en/lms/people/iurii-timrov</a></span></div>
</div>
<div id="appendonsend"></div>
<hr style="display:inline-block;width:98%" tabindex="-1">
<div id="divRplyFwdMsg" dir="ltr"><font face="Calibri, sans-serif" style="font-size:11pt" color="#000000"><b>From:</b> users <users-bounces@lists.quantum-espresso.org> on behalf of EDUARDO ARIEL MENENDEZ PROUPIN <emenendez@us.es><br>
<b>Sent:</b> Wednesday, December 6, 2023 10:24<br>
<b>To:</b> users@lists.quantum-espresso.org <users@lists.quantum-espresso.org><br>
<b>Subject:</b> Re: [QE-users] Thermodynamics with DFT+U</font>
<div> </div>
</div>
<style type="text/css" style="display:none">
<!--
p
        {margin-top:0;
        margin-bottom:0}
-->
</style>
<div dir="ltr">
<div class="x_elementToProof" style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
Hello!</div>
<div class="x_elementToProof" style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
I have read this thread, which is from three years ago, and I would like to know if there is any update, consensus, or a study about this issue. </div>
<div class="x_elementToProof" style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
<br>
</div>
<div class="x_elementToProof" style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
The topic of the thread was how to compare the energies of two systems when there is at least one element subject to Hubbard correction, in the case that the  Hubbard parameters are computed self-consistently via the HP code, and have different values in the
 two systems compared.  Should we choose one average value, or use the computed value for each system?  The two systems may be either:</div>
<ol start="1" data-editing-info="{"orderedStyleType":6,"unorderedStyleType":1}" data-listchain="__List_Chain_925" style="">
<li style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; list-style-type:"a) "; color:rgb(0,0,0)">
<span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Two phases of a material</span></li><li style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; list-style-type:"b) "; color:rgb(0,0,0)">
<span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Two antiferromagnetic configurations</span></li><li style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; list-style-type:"c) "; color:rgb(0,0,0)">
<span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Crystal with a transition metal impurity vs clean crystal and impurity in bulk metal.<br>
</span></li></ol>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)"><br>
</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">I may have a case of type (b), with certain energy order when using the self-consistent U values for each AFM configuration, and the opposite
 order when the same U is used for both configurations. The same U was computed for one configuration, I am waiting for the queue to finish calculations with the other U, but this is published (Naveas et al,
<a href="https://doi.org/10.1016/j.isci.2023.106033" id="LPlnk822446">https://doi.org/10.1016/j.isci.2023.106033</a>).</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)"><br>
</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Concerning the advantage of self consistency, let me rise the example LiCoO2 that comes with the HP code. The example produces U for Co and
 also for O, as well as V(Co-O). U(O-2p)=8.0439 eV. Is this parameter useful? As the example is not converged w.r.t. to k-points and cutoffs the number may change, but U(O-2p) is still there. I read PRB101, 064305 (2020) by Floris et al, and it seems that U(O-2p)
 is discarded. I am curious why, but I couldn't find a discussion. Maybe there is another article. My point here is that using self consistent parameters for some elements and shells, and discarding others is just a partial self-consistency.</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)"><br>
</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">A related question is whether the forces and energies are consistent with variable U and V. That is, Let us move the Fe impurity atom inside
 a crystal, and recompute the U and V for each position.  Force is the gradient of energy obtained in the Hellman-Feynman way, I guess with constant U,V.</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Pressure is the negative of the derivative of the energy with respect to volume, which implies a variation of U and V. I guess the stress is
 computed with constant U, V. I think that self-consistency could be implemented, but first we must be sure that comparing energies with variable, self-consistent parameters is correct.</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)"><br>
</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">Best regards,</span></div>
<div class="x_elementToProof"><span style="font-family:Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)"><br>
</span></div>
<div id="x_Signature">
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
Eduardo A. Menéndez Proupin</div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
Departamento de Física Aplicada I</div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
Universidad de Sevilla</div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
Teléfono: +34 9554 20231</div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
<a href="https://personal.us.es/emenendez/">https://personal.us.es/emenendez/</a></div>
<div style="font-family:Calibri,Arial,Helvetica,sans-serif; font-size:12pt; color:rgb(0,0,0)">
<a href="https://personal.us.es/emenendez/docencia/">https://personal.us.es/emenendez/docencia/</a><br>
</div>
</div>
</div>
</body>
</html>