Program THERMO_PW v.6.4.1 starts on 14Feb2023 at 22: 5:47 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 8 processors MPI processes distributed on 1 nodes R & G space division: proc/nbgrp/npool/nimage = 8 Reading input from _temporary_1 Warning: card &IONS ignored Warning: card / ignored Warning: card &CELL ignored Warning: card / ignored Message from routine read_cards : DEPRECATED: no units specified in ATOMIC_POSITIONS card Message from routine read_cards : ATOMIC_POSITIONS: units set to alat Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input Info: using nr1, nr2, nr3 values from input Doing a single scf calculation FFT mesh: ( 54, 54, 54 ) Bravais lattice: ibrav= 2: face centered cubic Cell parameters: alat= 8.791768 a.u. Starting primitive lattice vectors: crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) Starting reciprocal lattice vectors: reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) Starting atomic positions in Cartesian axes: site n. atom positions (alat units) 1 Xx tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) Starting atomic positions in crystallographic axes: site n. atom positions (cryst. coord.) 1 Xx tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( -0.5000000 1.5000000 -0.5000000 ) The point group 136 O_h (m-3m) is compatible with the Bravais lattice. The rotation matrices with the order used inside thermo_pw are: 48 Sym. Ops., with inversion, found s frac. trans. isym = 1 identity cryst. s( 1) = ( 1 0 0 ) ( 0 1 0 ) ( 0 0 1 ) cart. s( 1) = ( 1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 2 180 deg rotation - cart. axis [0,0,1] cryst. s( 2) = ( 0 1 -1 ) ( 1 0 -1 ) ( 0 0 -1 ) cart. s( 2) = ( -1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 3 180 deg rotation - cart. axis [0,1,0] cryst. s( 3) = ( -1 0 0 ) ( -1 0 1 ) ( -1 1 0 ) cart. s( 3) = ( -1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 4 180 deg rotation - cart. axis [1,0,0] cryst. s( 4) = ( 0 -1 1 ) ( 0 -1 0 ) ( 1 -1 0 ) cart. s( 4) = ( 1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 5 180 deg rotation - cart. axis [1,1,0] cryst. s( 5) = ( 0 -1 0 ) ( -1 0 0 ) ( 0 0 -1 ) cart. s( 5) = ( 0.000 1.000 0.000 ) ( 1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 6 180 deg rotation - cart. axis [1,-1,0] cryst. s( 6) = ( -1 0 1 ) ( 0 -1 1 ) ( 0 0 1 ) cart. s( 6) = ( 0.000 -1.000 0.000 ) ( -1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 7 90 deg rotation - cart. axis [0,0,-1] cryst. s( 7) = ( 0 1 0 ) ( 0 1 -1 ) ( -1 1 0 ) cart. s( 7) = ( 0.000 1.000 0.000 ) ( -1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 8 90 deg rotation - cart. axis [0,0,1] cryst. s( 8) = ( 1 0 -1 ) ( 1 0 0 ) ( 1 -1 0 ) cart. s( 8) = ( 0.000 -1.000 0.000 ) ( 1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 9 180 deg rotation - cart. axis [1,0,1] cryst. s( 9) = ( -1 0 0 ) ( 0 0 -1 ) ( 0 -1 0 ) cart. s( 9) = ( 0.000 0.000 1.000 ) ( 0.000 -1.000 0.000 ) ( 1.000 0.000 0.000 ) isym = 10 180 deg rotation - cart. axis [-1,0,1] cryst. s(10) = ( 1 0 0 ) ( 1 -1 0 ) ( 1 0 -1 ) cart. s(10) = ( 0.000 0.000 -1.000 ) ( 0.000 -1.000 0.000 ) ( -1.000 0.000 0.000 ) isym = 11 90 deg rotation - cart. axis [0,1,0] cryst. s(11) = ( 0 1 -1 ) ( -1 1 0 ) ( 0 1 0 ) cart. s(11) = ( 0.000 0.000 1.000 ) ( 0.000 1.000 0.000 ) ( -1.000 0.000 0.000 ) isym = 12 90 deg rotation - cart. axis [0,-1,0] cryst. s(12) = ( 0 -1 1 ) ( 0 0 1 ) ( -1 0 1 ) cart. s(12) = ( 0.000 0.000 -1.000 ) ( 0.000 1.000 0.000 ) ( 1.000 0.000 0.000 ) isym = 13 180 deg rotation - cart. axis [0,1,1] cryst. s(13) = ( -1 1 0 ) ( 0 1 0 ) ( 0 1 -1 ) cart. s(13) = ( -1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) ( 0.000 1.000 0.000 ) isym = 14 180 deg rotation - cart. axis [0,1,-1] cryst. s(14) = ( 0 0 -1 ) ( 0 -1 0 ) ( -1 0 0 ) cart. s(14) = ( -1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 0.000 -1.000 0.000 ) isym = 15 90 deg rotation - cart. axis [-1,0,0] cryst. s(15) = ( 0 0 1 ) ( -1 0 1 ) ( 0 -1 1 ) cart. s(15) = ( 1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) ( 0.000 -1.000 0.000 ) isym = 16 90 deg rotation - cart. axis [1,0,0] cryst. s(16) = ( 1 -1 0 ) ( 1 0 -1 ) ( 1 0 0 ) cart. s(16) = ( 1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 0.000 1.000 0.000 ) isym = 17 120 deg rotation - cart. axis [-1,-1,-1] cryst. s(17) = ( -1 0 1 ) ( -1 1 0 ) ( -1 0 0 ) cart. s(17) = ( 0.000 1.000 0.000 ) ( 0.000 0.000 1.000 ) ( 1.000 0.000 0.000 ) isym = 18 120 deg rotation - cart. axis [-1,1,1] cryst. s(18) = ( 0 1 0 ) ( 0 0 1 ) ( 1 0 0 ) cart. s(18) = ( 0.000 -1.000 0.000 ) ( 0.000 0.000 1.000 ) ( -1.000 0.000 0.000 ) isym = 19 120 deg rotation - cart. axis [1,1,-1] cryst. s(19) = ( 1 0 -1 ) ( 0 0 -1 ) ( 0 1 -1 ) cart. s(19) = ( 0.000 1.000 0.000 ) ( 0.000 0.000 -1.000 ) ( -1.000 0.000 0.000 ) isym = 20 120 deg rotation - cart. axis [1,-1,1] cryst. s(20) = ( 0 -1 0 ) ( 1 -1 0 ) ( 0 -1 1 ) cart. s(20) = ( 0.000 -1.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 1.000 0.000 0.000 ) isym = 21 120 deg rotation - cart. axis [1,1,1] cryst. s(21) = ( 0 0 -1 ) ( 0 1 -1 ) ( 1 0 -1 ) cart. s(21) = ( 0.000 0.000 1.000 ) ( 1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) isym = 22 120 deg rotation - cart. axis [-1,1,-1] cryst. s(22) = ( -1 1 0 ) ( -1 0 0 ) ( -1 0 1 ) cart. s(22) = ( 0.000 0.000 1.000 ) ( -1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) isym = 23 120 deg rotation - cart. axis [1,-1,-1] cryst. s(23) = ( 0 0 1 ) ( 1 0 0 ) ( 0 1 0 ) cart. s(23) = ( 0.000 0.000 -1.000 ) ( -1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) isym = 24 120 deg rotation - cart. axis [-1,-1,1] cryst. s(24) = ( 1 -1 0 ) ( 0 -1 1 ) ( 0 -1 0 ) cart. s(24) = ( 0.000 0.000 -1.000 ) ( 1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) isym = 25 inversion cryst. s(25) = ( -1 0 0 ) ( 0 -1 0 ) ( 0 0 -1 ) cart. s(25) = ( -1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 26 inv. 180 deg rotation - cart. axis [0,0,1] cryst. s(26) = ( 0 -1 1 ) ( -1 0 1 ) ( 0 0 1 ) cart. s(26) = ( 1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 27 inv. 180 deg rotation - cart. axis [0,1,0] cryst. s(27) = ( 1 0 0 ) ( 1 0 -1 ) ( 1 -1 0 ) cart. s(27) = ( 1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 28 inv. 180 deg rotation - cart. axis [1,0,0] cryst. s(28) = ( 0 1 -1 ) ( 0 1 0 ) ( -1 1 0 ) cart. s(28) = ( -1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 29 inv. 180 deg rotation - cart. axis [1,1,0] cryst. s(29) = ( 0 1 0 ) ( 1 0 0 ) ( 0 0 1 ) cart. s(29) = ( 0.000 -1.000 0.000 ) ( -1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 30 inv. 180 deg rotation - cart. axis [1,-1,0] cryst. s(30) = ( 1 0 -1 ) ( 0 1 -1 ) ( 0 0 -1 ) cart. s(30) = ( 0.000 1.000 0.000 ) ( 1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) isym = 31 inv. 90 deg rotation - cart. axis [0,0,-1] cryst. s(31) = ( 0 -1 0 ) ( 0 -1 1 ) ( 1 -1 0 ) cart. s(31) = ( 0.000 -1.000 0.000 ) ( 1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 32 inv. 90 deg rotation - cart. axis [0,0,1] cryst. s(32) = ( -1 0 1 ) ( -1 0 0 ) ( -1 1 0 ) cart. s(32) = ( 0.000 1.000 0.000 ) ( -1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) isym = 33 inv. 180 deg rotation - cart. axis [1,0,1] cryst. s(33) = ( 1 0 0 ) ( 0 0 1 ) ( 0 1 0 ) cart. s(33) = ( 0.000 0.000 -1.000 ) ( 0.000 1.000 0.000 ) ( -1.000 0.000 0.000 ) isym = 34 inv. 180 deg rotation - cart. axis [-1,0,1] cryst. s(34) = ( -1 0 0 ) ( -1 1 0 ) ( -1 0 1 ) cart. s(34) = ( 0.000 0.000 1.000 ) ( 0.000 1.000 0.000 ) ( 1.000 0.000 0.000 ) isym = 35 inv. 90 deg rotation - cart. axis [0,1,0] cryst. s(35) = ( 0 -1 1 ) ( 1 -1 0 ) ( 0 -1 0 ) cart. s(35) = ( 0.000 0.000 -1.000 ) ( 0.000 -1.000 0.000 ) ( 1.000 0.000 0.000 ) isym = 36 inv. 90 deg rotation - cart. axis [0,-1,0] cryst. s(36) = ( 0 1 -1 ) ( 0 0 -1 ) ( 1 0 -1 ) cart. s(36) = ( 0.000 0.000 1.000 ) ( 0.000 -1.000 0.000 ) ( -1.000 0.000 0.000 ) isym = 37 inv. 180 deg rotation - cart. axis [0,1,1] cryst. s(37) = ( 1 -1 0 ) ( 0 -1 0 ) ( 0 -1 1 ) cart. s(37) = ( 1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 0.000 -1.000 0.000 ) isym = 38 inv. 180 deg rotation - cart. axis [0,1,-1] cryst. s(38) = ( 0 0 1 ) ( 0 1 0 ) ( 1 0 0 ) cart. s(38) = ( 1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) ( 0.000 1.000 0.000 ) isym = 39 inv. 90 deg rotation - cart. axis [-1,0,0] cryst. s(39) = ( 0 0 -1 ) ( 1 0 -1 ) ( 0 1 -1 ) cart. s(39) = ( -1.000 0.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 0.000 1.000 0.000 ) isym = 40 inv. 90 deg rotation - cart. axis [1,0,0] cryst. s(40) = ( -1 1 0 ) ( -1 0 1 ) ( -1 0 0 ) cart. s(40) = ( -1.000 0.000 0.000 ) ( 0.000 0.000 1.000 ) ( 0.000 -1.000 0.000 ) isym = 41 inv. 120 deg rotation - cart. axis [-1,-1,-1] cryst. s(41) = ( 1 0 -1 ) ( 1 -1 0 ) ( 1 0 0 ) cart. s(41) = ( 0.000 -1.000 0.000 ) ( 0.000 0.000 -1.000 ) ( -1.000 0.000 0.000 ) isym = 42 inv. 120 deg rotation - cart. axis [-1,1,1] cryst. s(42) = ( 0 -1 0 ) ( 0 0 -1 ) ( -1 0 0 ) cart. s(42) = ( 0.000 1.000 0.000 ) ( 0.000 0.000 -1.000 ) ( 1.000 0.000 0.000 ) isym = 43 inv. 120 deg rotation - cart. axis [1,1,-1] cryst. s(43) = ( -1 0 1 ) ( 0 0 1 ) ( 0 -1 1 ) cart. s(43) = ( 0.000 -1.000 0.000 ) ( 0.000 0.000 1.000 ) ( 1.000 0.000 0.000 ) isym = 44 inv. 120 deg rotation - cart. axis [1,-1,1] cryst. s(44) = ( 0 1 0 ) ( -1 1 0 ) ( 0 1 -1 ) cart. s(44) = ( 0.000 1.000 0.000 ) ( 0.000 0.000 1.000 ) ( -1.000 0.000 0.000 ) isym = 45 inv. 120 deg rotation - cart. axis [1,1,1] cryst. s(45) = ( 0 0 1 ) ( 0 -1 1 ) ( -1 0 1 ) cart. s(45) = ( 0.000 0.000 -1.000 ) ( -1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) isym = 46 inv. 120 deg rotation - cart. axis [-1,1,-1] cryst. s(46) = ( 1 -1 0 ) ( 1 0 0 ) ( 1 0 -1 ) cart. s(46) = ( 0.000 0.000 -1.000 ) ( 1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) isym = 47 inv. 120 deg rotation - cart. axis [1,-1,-1] cryst. s(47) = ( 0 0 -1 ) ( -1 0 0 ) ( 0 -1 0 ) cart. s(47) = ( 0.000 0.000 1.000 ) ( 1.000 0.000 0.000 ) ( 0.000 -1.000 0.000 ) isym = 48 inv. 120 deg rotation - cart. axis [-1,-1,1] cryst. s(48) = ( -1 1 0 ) ( 0 1 -1 ) ( 0 1 0 ) cart. s(48) = ( 0.000 0.000 1.000 ) ( -1.000 0.000 0.000 ) ( 0.000 1.000 0.000 ) point group O_h (m-3m) there are 10 classes the character table: E 8C3 3C2 6C4 6C2' i 8S6 3s_h 6S4 6s_d A_1g 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 A_2g 1.00 1.00 1.00 -1.00 -1.00 1.00 1.00 1.00 -1.00 -1.00 E_g 2.00 -1.00 2.00 0.00 0.00 2.00 -1.00 2.00 0.00 0.00 T_1g 3.00 0.00 -1.00 1.00 -1.00 3.00 0.00 -1.00 1.00 -1.00 T_2g 3.00 0.00 -1.00 -1.00 1.00 3.00 0.00 -1.00 -1.00 1.00 A_1u 1.00 1.00 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 A_2u 1.00 1.00 1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 1.00 E_u 2.00 -1.00 2.00 0.00 0.00 -2.00 1.00 -2.00 0.00 0.00 T_1u 3.00 0.00 -1.00 1.00 -1.00 -3.00 0.00 1.00 -1.00 1.00 T_2u 3.00 0.00 -1.00 -1.00 1.00 -3.00 0.00 1.00 1.00 -1.00 the symmetry operations in each class and the name of the first element: E 1 identity 8C3 17 19 20 18 24 21 22 23 120 deg rotation - cart. axis [-1,-1,-1] 3C2 2 4 3 180 deg rotation - cart. axis [0,0,1] 6C4 7 8 15 16 12 11 90 deg rotation - cart. axis [0,0,-1] 6C2' 5 6 14 13 10 9 180 deg rotation - cart. axis [1,1,0] i 25 inversion 8S6 41 43 44 42 48 45 46 47 inv. 120 deg rotation - cart. axis [-1,-1,-1] 3s_h 26 28 27 inv. 180 deg rotation - cart. axis [0,0,1] 6S4 31 32 39 40 36 35 inv. 90 deg rotation - cart. axis [0,0,-1] 6s_d 29 30 38 37 34 33 inv. 180 deg rotation - cart. axis [1,1,0] Space group identification, 48 symmetries: Bravais lattice 2 face centered cubic Point group number 32 / 136 O_h (m-3m) Nonsymmorphic operations not found: All fractional translations vanish Symmetries of the point group in standard order 1 E 1 2 2x 4 3 2y 3 4 2z 2 5 3xyz 21 6 3x-y-z 23 7 3-xy-z 22 8 3-x-yz 24 9 3-x-y-z 17 10 3-xyz 18 11 3x-yz 20 12 3xy-z 19 13 4-x 15 14 4x 16 15 4-y 12 16 4y 11 17 4-z 7 18 4z 8 19 2y-z 14 20 2yz 13 21 2x-z 10 22 2xz 9 23 2x-y 6 24 2xy 5 25 i 33 26 i2x 36 27 i2y 35 28 i2z 34 29 i3xyz 53 30 i3x-y-z 55 31 i3-xy-z 54 32 i3-x-yz 56 33i3-x-y-z 49 34 i3-xyz 50 35 i3x-yz 52 36 i3xy-z 51 37 i4-x 47 38 i4x 48 39 i4-y 44 40 i4y 43 41 i4-z 39 42 i4z 40 43 i2y-z 46 44 i2yz 45 45 i2x-z 42 46 i2xz 41 47 i2x-y 38 48 i2xy 37 Space group number 225 Space group Fm-3m (group number 225). The origin coincides with the ITA tables. The Laue class is O_h (m-3m) ---------------------------------------------------------------------- Ions are relaxed in each calculation ---------------------------------------------------------------------- Warning the mass of atom 1 178.490 a.m.u. does not match its name Xx Total mass of this unit cell 190.5010 a.m.u. Expected mass of this unit cell 12.0107 a.m.u. Density of this solid 12565.34 kg/m^3 12.5653 g/cm^3 Expected density of this solid 792.22 kg/m^3 0.7922 g/cm^3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Doing a self-consistent calculation ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 Subspace diagonalization in iterative solution of the eigenvalue problem: one sub-group per band group will be used scalapack distributed-memory algorithm (size of sub-group: 2* 2 procs) Parallelization info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Min 213 213 62 5795 5795 903 Max 214 214 63 5796 5796 906 Sum 1711 1711 499 46367 46367 7239 bravais-lattice index = 2 lattice parameter (alat) = 8.7918 a.u. unit-cell volume = 169.8903 (a.u.)^3 number of atoms/cell = 2 number of atomic types = 2 number of electrons = 30.00 number of Kohn-Sham states= 19 kinetic-energy cutoff = 160.0000 Ry charge density cutoff = 640.0000 Ry convergence threshold = 1.0E-10 mixing beta = 0.7000 number of iterations used = 8 plain mixing Exchange-correlation = PBE ( 1 4 3 4 0 0) celldm(1)= 8.791768 celldm(2)= 0.000000 celldm(3)= 0.000000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( -0.500000 0.000000 0.500000 ) a(2) = ( 0.000000 0.500000 0.500000 ) a(3) = ( -0.500000 0.500000 0.000000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( -1.000000 -1.000000 1.000000 ) b(2) = ( 1.000000 1.000000 1.000000 ) b(3) = ( -1.000000 1.000000 -1.000000 ) PseudoPot. # 1 for Hf read from file: /lustre03/project/6002385/enzevaee/QE_VCA_PsP/Hf_ONCV_PBE-1.2.upf MD5 check sum: 8b936da71c3de5b2d618430abe03e8dd Pseudo is Norm-conserving, Zval = 26.0 Generated using ONCVPSP code by D. R. Hamann Using radial grid of 602 points, 8 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 l(7) = 3 l(8) = 3 PseudoPot. # 2 for C read from file: /lustre03/project/6002385/enzevaee/QE_VCA_PsP/C_ONCV_PBE-1.2.upf MD5 check sum: 1a5f83a7b1f58d24996abe00ed223ac6 Pseudo is Norm-conserving, Zval = 4.0 Generated using ONCVPSP code by D. R. Hamann Using radial grid of 602 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 atomic species valence mass pseudopotential Xx 26.00 178.49000 Hf( 1.00) C 4.00 12.01100 C ( 1.00) 48 Sym. Ops., with inversion, found Cartesian axes site n. atom positions (alat units) 1 Xx tau( 1) = ( 0.0000000 0.0000000 0.0000000 ) 2 C tau( 2) = ( 0.5000000 0.5000000 0.5000000 ) number of k points= 256 Marzari-Vanderbilt smearing, width (Ry)= 0.0073 Number of k-points >= 100: set verbosity='high' to print them. Dense grid: 46367 G-vectors FFT dimensions: ( 54, 54, 54) Estimated max dynamical RAM per process > 73.83 MB Estimated total dynamical RAM > 590.66 MB Initial potential from superposition of free atoms starting charge 29.87150, renormalised to 30.00000 Starting wfcs are random total cpu time spent up to now is 2.8 secs Self-consistent Calculation iteration # 1 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 8.2 total cpu time spent up to now is 24.2 secs total energy = -458.60031367 Ry Harris-Foulkes estimate = -459.15155880 Ry estimated scf accuracy < 0.71787118 Ry iteration # 2 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 2.39E-03, avg # of iterations = 3.2 total cpu time spent up to now is 33.5 secs total energy = -458.76000829 Ry Harris-Foulkes estimate = -459.30547085 Ry estimated scf accuracy < 1.23800010 Ry iteration # 3 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 2.39E-03, avg # of iterations = 3.0 total cpu time spent up to now is 41.7 secs total energy = -458.97617307 Ry Harris-Foulkes estimate = -458.97698676 Ry estimated scf accuracy < 0.00382111 Ry iteration # 4 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 1.27E-05, avg # of iterations = 3.0 total cpu time spent up to now is 51.5 secs total energy = -458.97728613 Ry Harris-Foulkes estimate = -458.97758735 Ry estimated scf accuracy < 0.00095813 Ry iteration # 5 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 3.19E-06, avg # of iterations = 2.3 total cpu time spent up to now is 59.9 secs total energy = -458.97735918 Ry Harris-Foulkes estimate = -458.97743075 Ry estimated scf accuracy < 0.00015050 Ry iteration # 6 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 5.02E-07, avg # of iterations = 2.0 total cpu time spent up to now is 67.3 secs total energy = -458.97735232 Ry Harris-Foulkes estimate = -458.97737057 Ry estimated scf accuracy < 0.00002899 Ry iteration # 7 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 9.66E-08, avg # of iterations = 2.0 total cpu time spent up to now is 76.1 secs total energy = -458.97735993 Ry Harris-Foulkes estimate = -458.97736029 Ry estimated scf accuracy < 0.00000065 Ry iteration # 8 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 2.17E-09, avg # of iterations = 2.1 total cpu time spent up to now is 84.9 secs total energy = -458.97736005 Ry Harris-Foulkes estimate = -458.97736006 Ry estimated scf accuracy < 0.00000002 Ry iteration # 9 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 5.08E-11, avg # of iterations = 2.8 total cpu time spent up to now is 92.9 secs total energy = -458.97736006 Ry Harris-Foulkes estimate = -458.97736006 Ry estimated scf accuracy < 3.9E-09 Ry iteration # 10 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 1.30E-11, avg # of iterations = 2.0 total cpu time spent up to now is 100.4 secs total energy = -458.97736006 Ry Harris-Foulkes estimate = -458.97736006 Ry estimated scf accuracy < 1.5E-10 Ry iteration # 11 ecut= 160.00 Ry beta= 0.70 Davidson diagonalization with overlap ethr = 5.11E-13, avg # of iterations = 2.2 total cpu time spent up to now is 108.9 secs End of self-consistent calculation Number of k-points >= 100: set verbosity='high' to print the bands. the Fermi energy is 23.7745 ev ! total energy = -458.97736006 Ry Harris-Foulkes estimate = -458.97736006 Ry estimated scf accuracy < 7.3E-12 Ry The total energy is the sum of the following terms: one-electron contribution = -131.60552768 Ry hartree contribution = 101.30277034 Ry xc contribution = -42.01873326 Ry ewald contribution = -386.65589864 Ry smearing contrib. (-TS) = 0.00002918 Ry convergence has been achieved in 11 iterations Writing output data file Mo2_Hf-1.00_C-1.00_NA-2_BI-2_B32_SCF.save/ THERMO_PW : 1m44.74s CPU 2m30.08s WALL This run was terminated on: 22: 8:17 14Feb2023 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------=