<div dir="ltr"><div>Dear Sir,</div><div>I did a vc-relax calculation once to obtain the equilibrium parameters at zero pressure. Will surely try the way you suggested. But is it possible to compute E(V), if yes, then how should I be varying the lattice parameters A, B and C? Attached below is my input file.</div><div>Regards.<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Oct 27, 2021 at 3:37 PM Davide Ceresoli <<a href="mailto:davide.ceresoli@cnr.it">davide.ceresoli@cnr.it</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Instead of doing a constant volume relaxation (calculation='relax'),<br>
do a constant pressure relaxation (calculation='vc-relax', press=....).<br>
This way you will obtain E(V) where E=E(P), V=V(P) and the enthalpy<br>
H(P) = E(P) + P*V(P).<br>
<br>
HTH.<br>
<br>
D.<br>
<br>
<br>
<br>
On 10/27/21 11:05 AM, Pooja Vyas wrote:<br>
> Dear users,<br>
> I have obtained equilibrium parameters for my orthorhombic system which has <br>
> ibrav=8 and lattice constants A, B and C in Angstroms. Now, I need energy vs. <br>
> lattice constant curve, for which I require to change the lattice constant. For <br>
> a cubic system only 'a' is used and hence only 'a' used to change. But can I <br>
> know what could be the correct way for changing lattice constants for <br>
> orthorhombic? If I change 'a' in step of 0.05 angstrom, then how should I change <br>
> B and C?<br>
> <br>
> Any kind of help is appreciated.<br>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" rel="noreferrer" target="_blank">www.max-centre.eu</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><br>
</blockquote></div>