<div dir="ltr"><div>Hi Anupriya, <br></div><div>If decreasing the convergence threshold does not solve or modify significantly the imaginary frequencies, the problem may be due to the fact that atoms are in high symmetry positions. See that <br></div><div><br></div><div>ATOMIC_POSITIONS {crystal}<br>Rb       0.250000000   0.584491575   0.824889298<br>Rb       0.250000000   0.084378763   0.675213228</div><div>...</div><div>the a-coordinates are clearly of high symmetry. The b- and c-coordinates are not, apparently, but may be due to celldm(2)=2.185 anf  celldm(3)=3.657</div><div><br></div><div>Perovskites often suffer distortions with respect to the ideal positions, and the negative (imaginary) frequencies may reflect an incomplete relaxation. <br></div><div><br></div><div>I suggest shaking the structure a bit, either applying random displacements to the coordinates, or running a short molecular dynamics. Afterwards, relax the system using  the option nosym=.true. <br></div><div><br></div><div>Variable cell relaxation may also help. In principle, a stressed crystal should also have phonons with real frequencies, but the stress could induce a phase transition to a structure with a larger unit cell. <br></div><div><br></div><div>Good luck!<br></div><div><br clear="all"></div><div dir="ltr"><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">
<div>Eduardo Menendez Proupin</div><div>--------------------------------------<br></div><span style="color:rgb(106,168,79)"><font size="1"></font></span></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div><div class="gmail_quote"><br><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<br><br><br>---------- Forwarded message ----------<br>From: Anupriya Nyayban <<a href="mailto:mamaniphy@gmail.com" target="_blank">mamaniphy@gmail.com</a>><br>To: <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>Cc: <br>Bcc: <br>Date: Wed, 22 Sep 2021 19:13:27 +0530<br>Subject: [QE-users] Doubt regarding the phonon calculations of RbPbI3<br><div dir="ltr"><div>I have calculated the phonon dispersion of orthorhombic RbPbI3 (Pnma) using 
"PHONON" as implemented in Quantum Espresso and found the negative 
frequencies ( which should not be present as suggested in <a href="https://doi.org/10.1063/1.5131575" target="_blank">https://doi.org/10.1063/1.5131575</a>). It would be great help if you suggest to me where I am doing 
wrong!!! I have provided the computational details below:</div><div>1) The structure first is being relaxed and then the convergence tests are performed for Ecut, Kmesh and Lattice parameters.</div><div>2)
 Using the relaxed structure with converged parameters, SCF is performed
 with cov_thr=1.0d-8 (ecutwfc=70, ecutrho=600, kmesh=12*6*3); phonon 
calculation is performed with tr2_ph=1.0d-14 at Gamma point, frequencies
 are obtained by imposing acoustic sum rule at the Gamma point with 
asr=simple.</div><div><br></div><div>Thank you!!<br></div><br clear="all"><br>-- <br><div dir="ltr"><div dir="ltr"><div>With regards</div><div>Anupriya Nyayban</div><div>Ph.D. Scholar</div><div>Department of Physics</div><div>NIT Silchar<br></div></div></div></div>
<br><br><br><br></blockquote></div></div>