<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
span.DefaultFontHxMailStyle
{mso-style-name:"Default Font HxMail Style";
font-family:"Calibri",sans-serif;
color:windowtext;
font-weight:normal;
font-style:normal;
text-decoration:none none;}
span.apple-tab-span
{mso-style-name:apple-tab-span;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-US" link="blue" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt">Sorry probably I am misunderstanding you question.
<o:p></o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt">Are you taking into account the band folding when you compute the mass tensor in the cubic supercell ?
<o:p></o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt">If I have understood well what you are doing, you should compare the conduction-band’s effective masses at Gamma in the cubic supercell with those at X in the fcc cell
at X. <o:p></o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<p class="MsoNormal"><img width="512" height="398" style="width:5.3333in;height:4.1458in" id="Picture_x0020_3" src="cid:image001.gif@01D7AEE3.D0A14C80" alt="Silicon - The Yambo Project"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p></o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt">Regards – Pietro<o:p></o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<p class="MsoNormal">Sent from <a href="https://go.microsoft.com/fwlink/?LinkId=550986">
Mail</a> for Windows</p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<div style="mso-element:para-border-div;border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal" style="border:none;padding:0in"><b>From: </b><a href="mailto:schoen@physik.rwth-aachen.de">Schön, Carl-Friedrich</a><br>
<b>Sent: </b>Tuesday, September 21, 2021 11:47 AM<br>
<b>To: </b><a href="mailto:users@lists.quantum-espresso.org">Quantum ESPRESSO users Forum</a><br>
<b>Subject: </b>Re: [QE-users] Effective Mass Tensor unit-cell dependency</p>
</div>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
<p class="MsoNormal">Dear Paolo, <o:p></o:p></p>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">I take no responsibility to which unit cell is called what, I can never remember... Maybe my mind is too primitive to recognize the correct convention ;-)<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">I tried using ibrav=2 etc. for the 2-atom UC, but the results were (almost) identical to the ibrav=0 2-atom UC input:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<div>
<p class="MsoNormal"><span style="font-size:8.5pt">(Tensor for ibrav=2)<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:8.5pt">0.882 , 0.0 , 0.0<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:8.5pt">0.0 , 0.294 , -1.47<o:p></o:p></span></p>
</div>
<div>
<p class="MsoNormal"><span style="font-size:8.5pt">0.0 , -1.47 , 2.352<o:p></o:p></span></p>
</div>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">(Slight difference as I used a slightly different lattice parameter, but the shape of the tensor is identical)<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Hence not the one I would expect and see in the 8-atom UC. The reason I am using ibrav=0 is simply due to the way I generate my input files. As far as I understood it, it should not make a difference for the calculation, right? <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Thanks and all the best, <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Carl-Friedrich<span class="apple-tab-span"> </span><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal"><br>
<br>
<o:p></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
<div>
<p class="MsoNormal">Am 21.09.2021 um 15:49 schrieb Paolo Giannozzi <<a href="mailto:p.giannozzi@gmail.com">p.giannozzi@gmail.com</a>>:<o:p></o:p></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div>
<div>
<p class="MsoNormal">Funny: I have always called "primitive" the 2-atom cell. "conventional" the 8-atom one. Anyway, the 2-atom diamond structure (fcc lattice) is simply<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"> ibrav=2, a=lattice parameter (A) <o:p></o:p></p>
<div>
<div>
<p class="MsoNormal">or<o:p></o:p></p>
</div>
</div>
<div>
<p class="MsoNormal"> ibrav=2, celldm(1)=lattice parameter (a.u.)<o:p></o:p></p>
</div>
</div>
<div>
<p class="MsoNormal">(lattice parameter=side of the cube) plus<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">ATOMIC_POSITIONS (alat)<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">Si 0.00 0.00 0.00 <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">Si 0.25 0.25 0.25 <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">or<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">ATOMIC_POSITIONS (crystal)<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">Si 0.00 0.00 0.00 <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">Si 0.25 0.25 0.25 <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal">or any of the various possible ways of specifying atomic positions. If you do things properly you will find that the 2-atom and 8-atom cells give exactly the same results.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Paolo<o:p></o:p></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div>
<p class="MsoNormal">On Mon, Sep 20, 2021 at 1:28 PM Schön, Carl-Friedrich <<a href="mailto:schoen@physik.rwth-aachen.de">schoen@physik.rwth-aachen.de</a>> wrote:<o:p></o:p></p>
</div>
<blockquote style="border:none;border-left:solid #CCCCCC 1.0pt;padding:0in 0in 0in 6.0pt;margin-left:4.8pt;margin-top:5.0pt;margin-right:0in;margin-bottom:5.0pt">
<div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Dear QE users, <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">I have a question regarding the effective mass tensor, that I cannot seem to find the solution for. One could also rephrase this as a general question regarding the energy eigenvalues of k-points within different
representations of unit-cells.<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">I have used QE to calculate the bands/eigenvalues of Silicon. I have done this ones with the conventional unit cell (from materials project):<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i> </i><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Si2</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>1.0</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>3.8681383004362986 0.0 0.0</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>1.9340686210409386 3.349905532609194 0.0</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>1.9340686210409386 1.1166353539288019 3.1583211568194507</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Si</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>2</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Direct</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.250000000 0.250000000 0.250000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.000000000 0.000000000 0.000000000</i><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i> </i><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">As well as the primitive unitcell:<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Si8</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>1.0</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>5.4687280655 0.0000000000 0.0000000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.0000000000 5.4687280655 0.0000000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.0000000000 0.0000000000 5.4687280655</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Si</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>8</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>Direct</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.250000000 0.750000044 0.250000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>-0.000000000 -0.000000000 0.500000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.250000000 0.250000000 0.750000044</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>-0.000000000 0.500000000 0.000000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.750000044 0.750000044 0.750000044</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.500000000 0.000000000 0.000000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.750000044 0.250000000 0.250000000</i><o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i>0.500000000 0.500000000 0.500000000</i><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"><i> </i><o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Let's look at the gamma point only at this point: I then constructed (using the emc.py script) a cartesian k-point grid around the Gamma point in order to get the effective mass tensor for the gamma point for
each definition of the unit cell (Conduction Band). For the primitive, 8 atom unit cell, I get something like:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">-20.46496343 0.00000000 0.00000000<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">0.00000000 -20.46496343 0.00000000<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">0.00000000 0.00000000 -20.46496343<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">with all Eigenvalues being -20.465 (the tensors are given in units of 1/m*). As far as I am aware, this is what it should look like in terms of symmetry/degeneracy (the absolute values are not of interest at this
point).<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">If I look at the conventional, 2 atom unit cell, I get something like:<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">0.88345374 -0.00018375 -0.00018375<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">-0.00018375 0.11245293 -1.46684926<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">-0.00018375 -1.46684926 2.17115005<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">with non-degenerate eigenvalues of -0.65, 0.88, 2.93.<o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">I do not understand how this can be. I would understand that the tensors might look different due to different (absolute) orientation in k-space, but the eigenvalues should remain identical, should they not? Otherwise
the physics would have changed. Especially in the example of the Gamma point above, I would have assumed to get the exact same tensor, as the effective masses are equal in all directions. Again, the dense grid around the Gamma point is constructed as cartesian
cube in both cases. <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">I therefore looked at the eigenvalues (energies in the conduction band) of the nscf calculation of said dense grid:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Points that should be equivalent (and are indeed identical in the primitive 8 atom case) are not in the 2 atom case, e.g. E(0.01,0,0)!=E(0,0.01,0). I varied the spacing of the grid, but to no effect. The differences
are also too big to be numeric errors:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Position:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">5.8000000E-03 0.0000000E+00 0.0000000E+00<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Eigenenergies:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 1 -5.811100<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 2 5.989300<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 3 5.997400<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 4 6.001900<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 5 8.550800 <span style="font-family:Wingdings">à</span> Conductino Band<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 6 8.552000<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 7 8.556000<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 8 9.102700<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 9 13.711000<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 10 13.716400<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 11 13.883000<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 12 17.181200<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Position:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 0.0000000E+00 -5.8500000E-03 -0.0000000E+00<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Eigenenergies<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 1 -5.811100<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 2 5.988800<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 3 5.998800<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 4 6.000700<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 5 8.549800 <span style="font-family:Wingdings">à</span>Conduction Band<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 6 8.554400<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 7 8.554800<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 8 9.102800<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 9 13.710800<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 10 13.716400<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 11 13.883100<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> 12 17.179600<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
</div>
<div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Here the input I used for the scf calculation:<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">&control<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">calculation = 'scf'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">prefix='Si_mp-149_computed_Relax_6'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">tstress = .true.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">tprnfor = .true.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">pseudo_dir='/rwthfs/rz/cluster/home/NC'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">outdir='tmp'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">disk_io='low'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">wf_collect=.true.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">verbosity= 'high'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">/ <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">&system<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ibrav =0,<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">nat=2<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ntyp=1<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ecutwfc = 100<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ecutrho = 400<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">occupations = 'fixed'<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">/ <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">&electrons<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">mixing_beta = 0.2<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">conv_thr = 1.0d-10<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">/ <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ATOMIC_SPECIES<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Si 28.086 Si.upf<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">ATOMIC_POSITIONS {crystal}<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Si 0.25 0.25 0.25<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Si 0.0 0.0 0.0<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">CELL_PARAMETERS<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">7.309722 0.0 0.0<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">3.65486 6.330404 0.0<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">3.65486 2.110135 5.968362<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">K_POINTS {automatic}<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">24 24 24 0 0 0<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">I am not sure what I am missing… In my understanding the results should be (generelly) independent of the definitino of the used unit-cell…<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Thank you and all the best, <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt"> <o:p></o:p></p>
</div>
<div>
<p class="MsoNormal" style="margin-left:81.6pt">Carl-Friedrich Schön, PhD Student, RWTH Aachen University<o:p></o:p></p>
</div>
</div>
</div>
<p class="MsoNormal" style="margin-left:81.6pt">_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/" target="_blank">www.max-centre.eu</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">
users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><o:p></o:p></p>
</blockquote>
</div>
<p class="MsoNormal"><br clear="all">
<br>
-- <o:p></o:p></p>
<div>
<div>
<div>
<div>
<div>
<p class="MsoNormal" style="margin-bottom:12.0pt">Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>
Univ. Udine, via delle Scienze 206, 33100 Udine, Italy<br>
Phone +39-0432-558216, fax +39-0432-558222<o:p></o:p></p>
</div>
</div>
</div>
</div>
</div>
<p class="MsoNormal">_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu">www.max-centre.eu</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users">https://lists.quantum-espresso.org/mailman/listinfo/users</a><o:p></o:p></p>
</div>
</blockquote>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><span class="DefaultFontHxMailStyle"><span style="font-size:12.0pt"><o:p> </o:p></span></span></p>
</div>
</body>
</html>