<div dir="ltr"><div>It took me some time ... but I can confirm that there is a problem in the restart of 'Force theorem' calculations, that will be fixed in the next release. Thank you for reporting this<br></div><div><br></div><div>Paolo<br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Feb 5, 2020 at 4:38 PM LE-LAURENT Ludovic <<a href="mailto:ludovic.le-laurent@cea.fr">ludovic.le-laurent@cea.fr</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div>
<div style="direction:ltr;font-family:Tahoma;color:rgb(0,0,0);font-size:10pt">
<div>Dear users,</div>
<div><br>
</div>
<div>I found the origin of the problem. I am doing my calculation on a cluster that has a time limit of 20 hours, but my nscf calculations exceed this time. Since I have 49 K points, I have to use the restart option in the parameter restart_mode, to compute
the last K points not computed during the first 20 hours. However, if I choose a smaller number of K points, for which calculations finish in less than 20 hours, I don't have any problem of different Fermi energies between both orientations. But, if I stop
my calculation with the parameter max_seconds and restart it, then the same problem happens.</div>
<div><br>
</div>
<div>Ludovic Le Laurent</div>
<div>CEA Saclay, IRAMIS, SPEC bat.771</div>
<div>91191, Gif-Sur-Yvette Ceadex, France<br>
</div>
<div style="font-family:Times New Roman;color:rgb(0,0,0);font-size:16px">
<hr>
<div id="gmail-m_-8037356157104497208divRpF384048" style="direction:ltr"><font size="2" face="Tahoma" color="#000000"><b>De :</b> users [<a href="mailto:users-bounces@lists.quantum-espresso.org" target="_blank">users-bounces@lists.quantum-espresso.org</a>] de la part de LE-LAURENT Ludovic<br>
<b>Envoyé :</b> mardi 28 janvier 2020 10:46<br>
<b>À :</b> Quantum ESPRESSO users Forum [<a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a>]<br>
<b>Objet :</b> [PROVENANCE INTERNET] [QE-users] Issue with Fermi energies during a nscf calculation withSOC<br>
</font><br>
</div>
<div></div>
<div>
<div style="direction:ltr;font-family:Tahoma;color:rgb(0,0,0);font-size:10pt">
<div>Dear users,</div>
<div><br>
</div>
<div>I'm trying to compute the magnetocrystalline anisotropy of C60 on Co with QE 6.3, but I have some troubles doing this. Indeed after an scf magnetic calculation without SOC of this system (with no problem), I use the force theorem to make the nscf calculation
with SOC under two magnetizations : in-plane and out-of-plane. This method works well for the others systems I studied. But in this case, I obtain really different Fermi energies for each magnetization : 3.84eV and 3.63 eV. The DOS are moreorless the same,
except one is translated from the other by 0.2 eV. I've tried a lot of different parameters, playing on the smearing, diagonalization threshold, ... Nothing works. Any idea ?</div>
<div><br>
</div>
<div>Thank you,</div>
<div>Best regards,</div>
<div>Ludovic Le Laurent.<br>
</div>
<div><br>
</div>
<div>PS : Here is the input for one nscf calculation (the other one has just the parameter angle1(1)=90)<br>
</div>
<div><br>
</div>
<div>&control<br>
calculation='nscf'<br>
restart_mode='from_scratch'<br>
pseudo_dir='/home/llelaur/QE/pseudo/'<br>
outdir='/home/llelaur/QE/tmp/'<br>
prefix='per_coc60'<br>
wf_collect=.true.<br>
/<br>
&system<br>
ibrav=4<br>
celldm(1)= 18.894214739304<br>
celldm(3)=3.0<br>
nat=140<br>
ntyp=2<br>
ecutwfc = 30.0,<br>
ecutrho = 300.0,<br>
occupations='smearing',<br>
smearing='mv',<br>
degauss=0.001<br>
starting_magnetization(1)=1.0,<br>
noncolin = .true.<br>
lspinorb = .true.<br>
angle1(1) = 0,<br>
angle2(1) = 0,<br>
lforcet = .true.<br>
nosym = .true.<br>
/<br>
&electrons<br>
startingpot = 'file'<br>
diago_thr_init = 1.d-12<br>
mixing_mode = 'local-TF'<br>
mixing_beta = 0.4<br>
diagonalization='david'<br>
/<br>
&ions<br>
/<br>
ATOMIC_SPECIES<br>
Co 58.933 CorelUSPBE.RRKJ3.UPF<br>
C 12.01 C.rel-pbe-n-rrkjus_psl.0.1.UPF<br>
ATOMIC_POSITIONS {angstrom}<br>
Co 0.000000000 0.000000000 2.019286000 <br>
Co 2.499595400 0.000000000 2.019286000 <br>
Co 4.999191900 0.000000000 2.019286000 <br>
Co 7.498787300 0.000000000 2.019286000 <br>
Co -1.249798200 2.164713500 2.019286000 <br>
Co 1.249798200 2.164713500 2.019286000 <br>
Co 3.749393700 2.164713500 2.019286000 <br>
Co 6.248990100 2.164713500 2.019286000 <br>
Co -2.499595400 4.329427000 2.019286000 <br>
Co 0.000000000 4.329427000 2.019286000 <br>
Co 2.499595400 4.329427000 2.019286000 <br>
Co 4.999191900 4.329427000 2.019286000 <br>
Co -3.749393700 6.494140500 2.019286000 <br>
Co -1.249798200 6.494140500 2.019286000 <br>
Co 1.249798200 6.494140500 2.019286000 <br>
Co 3.749393700 6.494140500 2.019286000 <br>
Co 1.249798200 0.721571500 4.038572000 <br>
Co 3.749393700 0.721571500 4.038572000 <br>
Co 6.248990100 0.721571500 4.038572000 <br>
Co 8.748585500 0.721571500 4.038572000 <br>
Co 0.000000000 2.886285000 4.038572000 <br>
Co 2.499595400 2.886285000 4.038572000 <br>
Co 4.999191900 2.886285000 4.038572000 <br>
Co 7.498787300 2.886285000 4.038572000 <br>
Co -1.249798200 5.050998500 4.038572000 <br>
Co 1.249798200 5.050998500 4.038572000 <br>
Co 3.749393700 5.050998500 4.038572000 <br>
Co 6.248990100 5.050998500 4.038572000 <br>
Co -2.499595400 7.215712000 4.038572000 <br>
Co 0.000000000 7.215712000 4.038572000 <br>
Co 2.499595400 7.215712000 4.038572000 <br>
Co 4.999191900 7.215712000 4.038572000 <br>
Co 0.000000000 0.000000000 6.057859000 <br>
Co 2.499595400 0.000000000 6.057859000 <br>
Co 4.999191900 0.000000000 6.057859000 <br>
Co 7.498787300 0.000000000 6.057859000 <br>
Co -1.249798200 2.164713500 6.057859000 <br>
Co 1.249798200 2.164713500 6.057859000 <br>
Co 3.749393700 2.164713500 6.057859000 <br>
Co 6.248990100 2.164713500 6.057859000 <br>
Co -2.499595400 4.329427000 6.057859000 <br>
Co 0.000000000 4.329427000 6.057859000 <br>
Co 2.499595400 4.329427000 6.057859000 <br>
Co 4.999191900 4.329427000 6.057859000 <br>
Co -3.749393700 6.494140500 6.057859000 <br>
Co -1.249798200 6.494140500 6.057859000 <br>
Co 1.249798200 6.494140500 6.057859000 <br>
Co 3.749393700 6.494140500 6.057859000 <br>
Co 1.245323480 0.660105860 8.061664275<br>
Co 3.727228771 0.685163450 8.089187506<br>
Co 6.240296709 0.696102881 8.079123352<br>
Co 8.751973270 0.697271165 8.117253070<br>
Co -0.055563421 2.889126731 8.088003602<br>
Co 2.532436405 2.876179101 8.044027066<br>
Co 5.001202080 2.858517698 8.087416421<br>
Co 7.492274853 2.845534571 8.114894296<br>
Co -1.255353926 5.022222023 8.114102569<br>
Co 1.218377885 5.006644351 8.119752394<br>
Co 3.751812542 5.033383539 8.078467932<br>
Co 6.240877357 5.015884451 8.071931878<br>
Co -2.508060303 7.186743227 8.091133445<br>
Co -0.009631343 7.182676298 8.080876369<br>
Co 2.492936804 7.181485223 8.073766753<br>
Co 4.986453164 7.188854777 8.093565868<br>
Co -0.016535262 -0.070323981 10.074722374<br>
Co 2.504905537 -0.063475485 10.118539647<br>
Co 5.028022949 -0.054962542 10.018598018<br>
Co 7.478684719 -0.041201161 10.023893187<br>
Co -1.300141162 2.077256746 10.144663101<br>
Co 1.206132328 2.120884832 9.924149949<br>
Co 3.809616878 2.069218291 9.969278648<br>
Co 6.262058748 2.118339210 10.043055479<br>
Co -2.504833164 4.293530653 10.028348897<br>
Co -0.033900477 4.340181122 10.205181617<br>
Co 2.501859823 4.371793184 9.940144648<br>
Co 4.990838859 4.315307668 10.060196923<br>
Co -3.748510985 6.444760240 10.009711641<br>
Co -1.256080771 6.469308068 10.028027255<br>
Co 1.244704446 6.501109336 10.033230859<br>
Co 3.743507877 6.503971079 10.029994837<br>
C 0.472901795 0.622456956 13.803233495<br>
C 1.773216383 -0.037702827 13.706766749<br>
C 1.115117859 2.162241279 11.969918044<br>
C 2.730531316 0.363360823 12.766203299<br>
C 0.144617099 1.702664185 12.965561096<br>
C 2.420266231 1.490062267 11.847613698<br>
C 0.118379471 0.665325052 15.203801706<br>
C 2.197507663 -0.403742111 15.043015281<br>
C 1.072798410 3.633022334 12.022295639<br>
C -0.534447634 2.871679874 13.516296783<br>
C 4.122298329 0.480377653 13.186080890<br>
C 3.620527994 2.326252525 11.869411797<br>
C 1.172929711 0.023440858 15.971144563<br>
C 0.017547181 4.075036900 12.915860401<br>
C 4.685237534 1.678052009 12.602063101<br>
C 3.546374904 -0.335752633 15.421699336<br>
C -0.542421902 1.782132295 15.730457966<br>
C -0.862160606 2.906984910 14.877160166<br>
C 3.566073594 3.761438331 11.706338161<br>
C 2.296909510 4.403509213 11.884420993<br>
C 4.525820585 0.132120655 14.476099908<br>
C 1.525806077 0.505531120 17.237727914<br>
C 0.219587664 5.260910230 13.650393575<br>
C 5.653519061 2.459548035 13.258828896<br>
C 5.504642058 0.931866023 15.180250109<br>
C -0.665263962 4.120365279 15.647911500<br>
C -0.167226960 2.290966382 17.036108629<br>
C 2.461614805 5.663189247 12.632397035<br>
C 4.579795753 4.571639804 12.436912121<br>
C 3.916750294 0.168446806 16.729632379<br>
C 2.923799169 0.581989071 17.626968082<br>
C 0.842021036 1.663410044 17.783628083<br>
C -0.138093018 5.276359061 15.047614288<br>
C 5.559439302 3.910985379 13.206072293<br>
C 1.436286437 6.059325630 13.519998445<br>
C 6.049129658 2.077292972 14.584706667<br>
C 3.872045694 5.723341840 12.996285782<br>
C 5.131196333 0.954854249 16.578637407<br>
C -0.243849752 3.739467538 16.985196089<br>
C 3.104667668 1.793000536 18.408511901<br>
C 1.816400144 2.459381369 18.508147058<br>
C 0.856089434 6.050480618 15.773068107<br>
C 5.924824443 4.415302128 14.502545983<br>
C 1.831736821 6.522923915 14.821995242<br>
C 6.224939123 3.285156665 15.359835995<br>
C 4.220672775 6.184398458 14.266223977<br>
C 5.306914796 2.123949882 17.334280128<br>
C 0.694419967 4.505330933 17.691534995<br>
C 1.743751057 3.859547826 18.463502302<br>
C 4.276753343 2.551549283 18.263546789<br>
C 3.184794887 6.600776051 15.184075823<br>
C 5.864824360 3.310102330 16.707557729<br>
C 1.258554039 5.685565575 17.060985670<br>
C 5.264628391 5.536370139 15.023199857<br>
C 2.957443376 4.644086497 18.312498015<br>
C 4.201339823 4.002451850 18.215132537<br>
C 3.600932268 6.222710269 16.519623671<br>
C 5.183771100 4.470962225 17.253447424<br>
C 2.654864410 5.772527341 17.449002308<br>
C 4.890877456 5.561132245 16.420751915<br>
K_POINTS (automatic)<br>
7 7 1 0 0 0<br>
</div>
</div>
</div>
</div>
</div>
</div>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/quantum-espresso" rel="noreferrer" target="_blank">www.max-centre.eu/quantum-espresso</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote></div><br clear="all"><br>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>Univ. Udine, via delle Scienze 206, 33100 Udine, Italy<br>Phone +39-0432-558216, fax +39-0432-558222<br><br></div></div></div></div></div>