<div dir="ltr"><div class="gmail_quote"><div>Dear Andrii Shyichuk,</div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><u></u>
<div style="font-family:Verdana,Geneva,sans-serif">
<p>From your magnetization data I can see that there is a significant spin-down on Co and some significant spin-ups on the other sites. <br>This fact on itself indicates two or more magnetization sites, no matter what the total magnetization says. If you wanted it to be on Co only - well, it is not only there - as there are other sites. <br><br>Please note that these values correspond to non-overlapping atomic spheres, meaning that actual Co magnetization is (much) higher than the displayed values. <br></p></div></blockquote><div>Okay <br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div style="font-family:Verdana,Geneva,sans-serif"><p><br>As to why in particular does it happen the way it happen - I do not have a precise answer. <br>You may try pseudopotentials with spin-orbit coupling, or an all-electron code, or a molecular code (atomic-orbital based, non-periodic, e.g. Gaussian) just to see if you get the same result. <br></p></div></blockquote><div>I have done the minimization of singlet and triplet using gaussian and the triplet state is more stable than singlet.</div><div><br></div><div>Naga<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div style="font-family:Verdana,Geneva,sans-serif"><p><br>Best regards. <br>Andrii <br><br>W dniu 2020-10-27 09:38, samala nagaprasad reddy napisał:</p>
<blockquote type="cite" style="padding-left:5px;border-left:2px solid rgb(16,16,255);margin-left:5px">
<div dir="ltr">
<div dir="ltr">
<div>Dear Andrii Shyichuk,</div>
<div> </div>
<div>Thank you so much, for your detailed explanation.</div>
</div>
<div class="gmail_quote">
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div style="font-family:Verdana,Geneva,sans-serif">
<p>1. The starting magnetization result is weird. <br>There are apparently a few areas/centers of magnetization, summing up to 2.77 absolute magnetization.<br>Some of them are up, and some of them are down, hence the total magnetization (spin up minus spin down) is 0.3.<br><br>Plot the magnetization to see what happens, while atomic magnetizations can be found in the output file, after the SCF steps.<br>Same goes for the other results. Without the magnetization plot, you cannot know if it is localized where it should be. <br> </p>
</div>
</blockquote>
<div>From the starting_magnetization output, the Magnetic moment data is copied here. Atom 24 is Co. </div>
<div>Magnetic moment per site:<br>atom: 1 charge: 0.8381 magn: -0.0072 constr: 0.0000<br>atom: 2 charge: 0.7359 magn: -0.0151 constr: 0.0000<br>atom: 3 charge: 0.7788 magn: 0.0076 constr: 0.0000<br>atom: 4 charge: 0.8093 magn: -0.0269 constr: 0.0000<br>atom: 5 charge: 0.8320 magn: 0.0067 constr: 0.0000<br>atom: 6 charge: 0.8322 magn: -0.0195 constr: 0.0000<br>atom: 7 charge: 0.7581 magn: -0.0037 constr: 0.0000<br>atom: 8 charge: 0.7590 magn: 0.0002 constr: 0.0000<br>atom: 9 charge: 0.8329 magn: -0.0237 constr: 0.0000<br>atom: 10 charge: 0.8393 magn: 0.0090 constr: 0.0000<br>atom: 11 charge: 0.8295 magn: -0.0245 constr: 0.0000<br>atom: 12 charge: 0.7706 magn: 0.0020 constr: 0.0000<br>atom: 13 charge: 0.7626 magn: -0.0058 constr: 0.0000<br>atom: 14 charge: 0.8298 magn: -0.0171 constr: 0.0000<br>atom: 15 charge: 0.8408 magn: 0.0053 constr: 0.0000<br>atom: 16 charge: 0.8308 magn: -0.0263 constr: 0.0000<br>atom: 17 charge: 0.8158 magn: 0.0082 constr: 0.0000<br>atom: 18 charge: 0.8036 magn: -0.0166 constr: 0.0000<br>atom: 19 charge: 0.8416 magn: -0.0047 constr: 0.0000<br>atom: 20 charge: 0.7640 magn: 0.0021 constr: 0.0000<br>atom: 21 charge: 1.1987 magn: 0.0034 constr: 0.0000<br>atom: 22 charge: 1.1930 magn: 0.0031 constr: 0.0000<br>atom: 23 charge: 1.1107 magn: 0.0027 constr: 0.0000<br>atom: 24 charge: 13.1659 magn: -0.2418 constr: 0.0000<br>atom: 25 charge: 0.2760 magn: 0.0001 constr: 0.0000<br>atom: 26 charge: 0.3021 magn: 0.0001 constr: 0.0000<br>atom: 27 charge: 0.3101 magn: 0.0002 constr: 0.0000<br>atom: 28 charge: 0.3305 magn: -0.0002 constr: 0.0000<br>atom: 29 charge: 0.3365 magn: 0.0006 constr: 0.0000<br>atom: 30 charge: 0.1946 magn: -0.0002 constr: 0.0000<br>atom: 31 charge: 0.2463 magn: 0.0000 constr: 0.0000<br>atom: 32 charge: 0.2932 magn: 0.0001 constr: 0.0000<br>atom: 33 charge: 1.7268 magn: 0.1731 constr: 0.0000<br>atom: 34 charge: 0.7468 magn: 0.0702 constr: 0.0000<br>atom: 35 charge: 0.7615 magn: -0.0003 constr: 0.0000<br>atom: 36 charge: 0.7542 magn: -0.0003 constr: 0.0000<br>atom: 37 charge: 0.7593 magn: -0.0002 constr: 0.0000<br>atom: 38 charge: 4.5377 magn: -0.0011 constr: 0.0000<br>atom: 39 charge: 4.5690 magn: -0.0003 constr: 0.0000<br>atom: 40 charge: 4.6764 magn: 0.0001 constr: 0.0000<br>atom: 41 charge: 4.5738 magn: -0.0016 constr: 0.0000<br>atom: 42 charge: 4.6399 magn: -0.0014 constr: 0.0000<br>atom: 43 charge: 4.5299 magn: 0.0010 constr: 0.0000<br>atom: 44 charge: 4.5786 magn: -0.0005 constr: 0.0000<br>atom: 45 charge: 4.6315 magn: 0.0004 constr: 0.0000<br>atom: 46 charge: 4.5206 magn: -0.0010 constr: 0.0000<br>atom: 47 charge: 0.5296 magn: -0.0002 constr: 0.0000<br>atom: 48 charge: 0.4843 magn: 0.0001 constr: 0.0000<br>atom: 49 charge: 0.4805 magn: 0.0001 constr: 0.0000<br>atom: 50 charge: 0.7915 magn: 0.0004 constr: 0.0000</div>
<div> </div>
<div>also for triplet </div>
<div>Magnetic moment per site:<br>atom: 1 charge: 0.8449 magn: 0.0240 constr: 0.0000<br>atom: 2 charge: 0.8523 magn: 0.0012 constr: 0.0000<br>atom: 3 charge: 0.8486 magn: 0.0115 constr: 0.0000<br>atom: 4 charge: 0.8396 magn: 0.0167 constr: 0.0000<br>atom: 5 charge: 0.8456 magn: 0.0011 constr: 0.0000<br>atom: 6 charge: 0.8365 magn: 0.0249 constr: 0.0000<br>atom: 7 charge: 0.8556 magn: -0.0025 constr: 0.0000<br>atom: 8 charge: 0.8510 magn: 0.0182 constr: 0.0000<br>atom: 9 charge: 0.8398 magn: 0.0083 constr: 0.0000<br>atom: 10 charge: 0.8441 magn: 0.0092 constr: 0.0000<br>atom: 11 charge: 0.8393 magn: 0.0207 constr: 0.0000<br>atom: 12 charge: 0.8550 magn: -0.0019 constr: 0.0000<br>atom: 13 charge: 0.8515 magn: 0.0209 constr: 0.0000<br>atom: 14 charge: 0.8406 magn: 0.0016 constr: 0.0000<br>atom: 15 charge: 0.8425 magn: 0.0181 constr: 0.0000<br>atom: 16 charge: 0.8402 magn: 0.0121 constr: 0.0000<br>atom: 17 charge: 0.8502 magn: 0.0036 constr: 0.0000<br>atom: 18 charge: 0.8494 magn: 0.0218 constr: 0.0000<br>atom: 19 charge: 0.8491 magn: -0.0025 constr: 0.0000<br>atom: 20 charge: 1.3952 magn: 0.0006 constr: 0.0000<br>atom: 21 charge: 1.3895 magn: 0.0006 constr: 0.0000<br>atom: 22 charge: 1.3892 magn: 0.0015 constr: 0.0000<br>atom: 23 charge: 1.3950 magn: 0.0021 constr: 0.0000<br>atom: 24 charge: 14.3334 magn: -0.2847 constr: 0.0000<br>atom: 25 charge: 0.4321 magn: 0.0003 constr: 0.0000<br>atom: 26 charge: 0.4222 magn: -0.0010 constr: 0.0000<br>atom: 27 charge: 0.4239 magn: 0.0000 constr: 0.0000<br>atom: 28 charge: 0.4226 magn: -0.0011 constr: 0.0000<br>atom: 29 charge: 0.4212 magn: -0.0003 constr: 0.0000<br>atom: 30 charge: 0.4213 magn: -0.0011 constr: 0.0000<br>atom: 31 charge: 0.4205 magn: -0.0002 constr: 0.0000<br>atom: 32 charge: 0.4206 magn: -0.0007 constr: 0.0000<br>atom: 33 charge: 0.4231 magn: 0.0000 constr: 0.0000<br>atom: 34 charge: 0.4319 magn: 0.0002 constr: 0.0000<br>atom: 35 charge: 0.4321 magn: 0.0004 constr: 0.0000<br>atom: 36 charge: 0.4317 magn: 0.0004 constr: 0.0000<br>atom: 37 charge: 0.7670 magn: -0.0001 constr: 0.0000<br>atom: 38 charge: 0.7665 magn: -0.0004 constr: 0.0000<br>atom: 39 charge: 0.7674 magn: -0.0008 constr: 0.0000<br>atom: 40 charge: 4.6219 magn: 0.0002 constr: 0.0000<br>atom: 41 charge: 4.6196 magn: 0.0034 constr: 0.0000<br>atom: 42 charge: 4.6190 magn: 0.0010 constr: 0.0000<br>atom: 43 charge: 4.6186 magn: 0.0036 constr: 0.0000<br>atom: 44 charge: 4.6223 magn: 0.0006 constr: 0.0000<br>atom: 45 charge: 4.6175 magn: 0.0028 constr: 0.0000<br>atom: 46 charge: 4.6205 magn: 0.0013 constr: 0.0000<br>atom: 47 charge: 4.6207 magn: 0.0041 constr: 0.0000<br>atom: 48 charge: 4.6210 magn: 0.0015 constr: 0.0000<br>atom: 49 charge: 3.0620 magn: 0.3267 constr: 0.0000<br>atom: 50 charge: 3.0232 magn: 0.4564 constr: 0.0000</div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div style="font-family:Verdana,Geneva,sans-serif">
<p>I assume that there is only one Co atom in the system, and the magnetization should be localized there. <br>In the starting magnetization result, it is not. </p>
</div>
</blockquote>
<div>Why is it not localized in the starting_magnetization results? </div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div style="font-family:Verdana,Geneva,sans-serif">
<p><br>2. The triplet state has a lower energy, so yes, it looks more stable. Is it also more stable in the experimental data?</p>
</div>
</blockquote>
<div>No experimental data available. </div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div style="font-family:Verdana,Geneva,sans-serif">
<p><br>3. I'd say, the better approach is the one giving you a reasonable result.<br>The tot_magnetization calculations are stable in a sense that they are likely to converge with the desired magnetization.<br>The starting_magnetization are less stable from my experience: low-spin states can converge from high-spin starting_magnetization. </p>
</div>
</blockquote>
<div>I also felt the same from my experience, thanks for the confirmation.</div>
<div> </div>
<div>Thank you</div>
<div>Naga</div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div style="font-family:Verdana,Geneva,sans-serif">
<p><br>Best regards.<br>Andrii Shyichuk<br><br>W dniu 2020-10-21 09:52, samala nagaprasad reddy napisał:</p>
<blockquote style="padding-left:5px;border-left:2px solid rgb(16,16,255);margin-left:5px">
<div dir="ltr">
<div>Hello QE experts,</div>
<div> </div>
<div>I am trying spin polarized DFT studies of Co-corrole complex using QE (using just gamma point and large box size to avoid interactions), I am relaxing the structure using nspin = 2 and starting_magnetization(6) = 1.0, as initial guess of Co atom. At the end of relaxation I have observed the below</div>
<div> </div>
<div>total magnetization = 0.31 Bohr mag/cell<br>absolute magnetization = 2.77 Bohr mag/cell</div>
<div>and Final energy = -1144.9536036757 Ry</div>
<div> </div>
<div>When I minimize the structure in singlet and triplet states by fixing the total magnetization (non spin polarized gives singlet state, and used tot_magnetization = 2 for triplet). The relaxed energies are</div>
<div> Final energy = -1144.9318071744 Ry (singlet)</div>
<div> Final energy = -1144.9537812641 Ry (triplet)</div>
<div> </div>
<div>Regarding this I have few queries</div>
<div>1) what is the spin state of the relaxed complex with starting_magnetization(6) = 1.0 (singlet/triplet or any other)? It seems the electronic spin state is singlet bec the total magnetization is 0.31 and is close to 0.</div>
<div>2) In the spin restricted calculations, the triplet state is more stable than the singlet and how can we understand it from the above?</div>
<div>3) which approach is better (whether the guess starting_magnetization or by fixing the total magnetization)?</div>
<div> </div>
<div>Thanks in advance</div>
<div>Naga</div>
</div>
<br>
<pre>_______________________________________________
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" target="_blank">www.max-centre.eu</a>)
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a>
</pre>
</blockquote>
<p> </p>
<div> </div>
</div>
_______________________________________________<br> Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" target="_blank">www.max-centre.eu</a>)<br> users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br> <a href="https://lists.quantum-espresso.org/mailman/listinfo/users" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote>
</div>
</div>
<br>
<pre>_______________________________________________
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" target="_blank">www.max-centre.eu</a>)
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a>
</pre>
</blockquote>
<p> </p>
<div> </div>
</div>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu" rel="noreferrer" target="_blank">www.max-centre.eu</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote></div></div>