<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta name="Generator" content="Microsoft Word 15 (filtered medium)"><!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]--><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
p.xmsonormal, li.xmsonormal, div.xmsonormal
{mso-style-name:x_msonormal;
margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style></head><body lang="EN-US" link="blue" vlink="#954F72"><div class="WordSection1"><p class="MsoNormal">Also, the version of QE I’m using is 6.4.</p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Best,<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Hien Vo<o:p></o:p></p><p class="MsoNormal">Graduate Student @ The Chemistry Department<o:p></o:p></p><p class="MsoNormal">The University of Chicago<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><div style="mso-element:para-border-div;border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in"><p class="MsoNormal" style="border:none;padding:0in"><b>From: </b><a href="mailto:hvo@uchicago.edu">Hien Vo</a><br><b>Sent: </b>Thursday, August 13, 2020 10:51 AM<br><b>To: </b><a href="mailto:users@lists.quantum-espresso.org">Quantum ESPRESSO users Forum</a><br><b>Subject: </b>Re: [QE-users] Relaxing magnetic structures</p></div><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Hi Timrov Iurii,<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Thank you so much for replying to me! I’ve included my affiliation at the bottom of this email.<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p><span style="font-size:12.0pt;color:black">>What is not clear to me is why you have a different starting_magnetization in the final SCF run. Why not using the same starting_magnetization? There might be different minima, and by using different starting_magnetization you can end up in different minima. Not sure that this is what happens in your case though.<o:p></o:p></span></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">I think I was being unclear here. The final scf was done as part of the vc-relax routine. I’m including a link to my output here : <a href="https://urldefense.com/v3/__https:/drive.google.com/drive/folders/1JgEJWZVYAbLJI3w_OsSxAUhZQDA5JuLR?usp=sharing__;!!BpyFHLRN4TMTrA!rd33ZfjUiZzgZMq7dHDkp92LNCr-ZRIn0g75YCSqK3KnkAXlB-hcJS3mj7jUif2q$">https://drive.google.com/drive/folders/1JgEJWZVYAbLJI3w_OsSxAUhZQDA5JuLR?usp=sharing</a> . Since the relaxation took quite some time I had to split it into 2 runs, the second run is in the 0.7-2.out file. At the end when it runs the final scf run at the relaxed structure, the program picks starting_magnetization = -0.69 and 0.69, while originally my input is -0.7 and 0.7. I think it’s fine that the program picks another starting_magnetization, just wish it gave me a lower P. <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p>><span style="font-size:12.0pt;color:black"> As far as I know, typically, the differences in the pressure between the final step of vc-relax and the final SCF run is due to the not-large-enough cutoff (check the pw_forum archive for more discussions about this). But in your case you have 100/800 Ry which are already seem to be large, but I do not know if these are "good" cutoffs for the pseudos that you use. So I am not sure that this is the source of the problem in your case, but maybe it is worth checking.<o:p></o:p></span></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">So before doing these calculations I checked the convergence on a 10-atom cell. The results are here: <a href="https://urldefense.com/v3/__https:/drive.google.com/file/d/1dZRt-5dzDAibgV49Z4nX3QQKt04TA3hR/view?usp=sharing__;!!BpyFHLRN4TMTrA!rd33ZfjUiZzgZMq7dHDkp92LNCr-ZRIn0g75YCSqK3KnkAXlB-hcJS3mjz9X_Zkq$">https://drive.google.com/file/d/1dZRt-5dzDAibgV49Z4nX3QQKt04TA3hR/view?usp=sharing</a> . I think it looks fine? <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p><span style="font-size:12.0pt;color:black">>These are extremely small. I would use values not smaller than this:<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>forc_conv_thr=1.0D-5,<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>etot_conv_thr=1.0D-6,<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>and in many cases even larger values should be OK, like this<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>forc_conv_thr=1.0D-4,<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>etot_conv_thr=1.0D-5<o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">I was concerned about this too, but I’m trying to relax the structure for computing phonons by the finite displacement, so would larger values be ok in this case? <o:p></o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>> degauss=0.0036,<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black">>This is also very small. Which k point mesh do you use? You did not specify.<o:p></o:p></span></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">The k-point mesh I used is 8x6x8 which (after symmetry), gives 130 k-points for the 20-atom unit cell. In the 2<sup>nd</sup> link (my results for convergence tests), I did check degauss against different k-point meshes. I’m using this value so that my results are comparable to past work done in the group. Do you think I should change it? <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><span style="font-size:12.0pt;color:black">>> Hubbard_U(2)=3 <o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">>> Hubbard_U(3)=3<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black">>It seems you are using an empirical U or maybe you took from literature. Please note that it is possible to compute U for your system from first principles using the HP code of QE. If you are >interested, have a look at this paper: <a href="https://urldefense.com/v3/__https:/journals.aps.org/prb/abstract/10.1103/PhysRevB.98.085127__;!!BpyFHLRN4TMTrA!uOBrZH-JZqDOB3sVmaaTpAd3eaugAUSRpX2LTF_Rn2aS51MmXHeNbanCM-0yoHP-$">https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.085127</a><o:p></o:p></span></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">I’m using this U since it was computed by a postdoc in the group and we’re trying to maintain consistency so that my results and hers are comparable. <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Best,<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Hien Vo<o:p></o:p></p><p class="MsoNormal">Graduate Student @ The Chemistry Department<o:p></o:p></p><p class="MsoNormal">The University of Chicago<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in"><p class="MsoNormal"><b>From: </b><a href="mailto:iurii.timrov@epfl.ch">Timrov Iurii</a><br><b>Sent: </b>Thursday, August 13, 2020 3:30 AM<br><b>To: </b><a href="mailto:users@lists.quantum-espresso.org">users@lists.quantum-espresso.org</a><br><b>Subject: </b>Re: [QE-users] Relaxing magnetic structures<o:p></o:p></p></div><p class="MsoNormal"><o:p> </o:p></p><div id="divtagdefaultwrapper"><p><span style="font-size:12.0pt;color:black">Dear Hien Vo,<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">First of all, do not forget to add your affiliation when posting to the pw_forum. Also, it is useful to specify which version of QE was used. Check the posting guidelines here: <a href="https://urldefense.com/v3/__https:/www.quantum-espresso.org/forum__;!!BpyFHLRN4TMTrA!uOBrZH-JZqDOB3sVmaaTpAd3eaugAUSRpX2LTF_Rn2aS51MmXHeNbanCM4tbV-uy$">https://www.quantum-espresso.org/forum</a><o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">> What I notice is the vc-relax would get P to 0 but the final scf calculation at the relaxed structure would give me a large P using a different starting_magnetization from the one I used for the input.<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">What is not clear to me is why you have a different starting_magnetization in the final SCF run. Why not using the same starting_magnetization? There might be different minima, and by using different starting_magnetization you can end up in different minima. Not sure that this is what happens in your case though.<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">As far as I know, typically, the differences in the pressure between the final step of vc-relax and the final SCF run is due to the not-large-enough cutoff (check the pw_forum archive for more discussions about this). But in your case you have 100/800 Ry which are already seem to be large, but I do not know if these are "good" cutoffs for the pseudos that you use. So I am not sure that this is the source of the problem in your case, but maybe it is worth checking.<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">Some comments about your input parameters:<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> forc_conv_thr=1.0D-6,<o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> etot_conv_thr=1.4D-9,<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">These are extremely small. I would use values not smaller than this:<o:p></o:p></span></p><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">forc_conv_thr=1.0D-5,<o:p></o:p></span></p></div><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">etot_conv_thr=1.0D-6,<o:p></o:p></span></p></div><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">and in many cases even larger values should be OK, like this<o:p></o:p></span></p></div><div><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">forc_conv_thr=1.0D-4,<o:p></o:p></span></p></div><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">etot_conv_thr=1.0D-5<o:p></o:p></span></p></div><p class="MsoNormal"><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p></div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">> degauss=0.0036,<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">This is also very small. Which k point mesh do you use? You did not specify.<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><div><p class="MsoNormal"><span style="font-size:12.0pt;color:black">> Hubbard_U(2)=3 <o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> Hubbard_U(3)=3<o:p></o:p></span></p></div><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">It seems you are using an empirical U or maybe you took from literature. Please note that it is possible to compute U for your system from first principles using the HP code of QE. If you are interested, have a look at this paper: <a href="https://urldefense.com/v3/__https:/journals.aps.org/prb/abstract/10.1103/PhysRevB.98.085127__;!!BpyFHLRN4TMTrA!uOBrZH-JZqDOB3sVmaaTpAd3eaugAUSRpX2LTF_Rn2aS51MmXHeNbanCM-0yoHP-$">https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.085127</a><o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> La 138.9055 La.pbe-spfn-kjpaw_psl.1.0.0.UPF<o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> Co1 58.9332 Co.pbe-spn-kjpaw_psl.0.3.1.UPF<o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> Co2 58.9332 Co.pbe-spn-kjpaw_psl.0.3.1.UPF<o:p></o:p></span></p><p class="xmsonormal"><span style="font-size:12.0pt;color:black">> O 16.00 O.pbe-n-kjpaw_psl.1.0.0.UPF<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">This is your choice to use these pseudos. Just for the reference, I suggest to have a look here: <a href="https://urldefense.com/v3/__https:/www.materialscloud.org/discover/sssp/table/efficiency__;!!BpyFHLRN4TMTrA!uOBrZH-JZqDOB3sVmaaTpAd3eaugAUSRpX2LTF_Rn2aS51MmXHeNbanCM-RgGvRX$">https://www.materialscloud.org/discover/sssp/table/efficiency</a> <o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><p><span style="font-size:12.0pt;color:black">Cheers,<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black">Iurii<o:p></o:p></span></p><p><span style="font-size:12.0pt;color:black"><o:p> </o:p></span></p><div id="Signature"><div id="divtagdefaultwrapper"><div name="divtagdefaultwrapper"><div name="divtagdefaultwrapper"><p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:gray">--<br>Dr. Iurii Timrov<br>Postdoctoral Researcher</span><span style="font-size:12.0pt;color:black"><o:p></o:p></span></p></div><div name="divtagdefaultwrapper"><p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:gray">STI - IMX - THEOS and NCCR - MARVEL</span><span style="font-size:12.0pt;color:black"><o:p></o:p></span></p></div><div name="divtagdefaultwrapper"><p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:gray">Swiss Federal Institute of Technology Lausanne (EPFL)</span><span style="font-size:12.0pt;color:black"><o:p></o:p></span></p></div><div name="divtagdefaultwrapper"><p class="MsoNormal"><span style="font-size:12.0pt;font-family:"Times New Roman",serif;color:gray">CH-1015 Lausanne, Switzerland<br>+41 21 69 34 881</span><span style="font-size:12.0pt;color:black"><o:p></o:p></span></p></div><div name="divtagdefaultwrapper"><p class="MsoNormal"><span style="font-size:12.0pt;color:black"><a href="https://urldefense.com/v3/__http:/people.epfl.ch/265334__;!!BpyFHLRN4TMTrA!uOBrZH-JZqDOB3sVmaaTpAd3eaugAUSRpX2LTF_Rn2aS51MmXHeNbanCM3NUdNoK$">http://people.epfl.ch/265334</a><o:p></o:p></span></p></div></div></div></div></div><p class="MsoNormal"><img border="0" width="694" height="2" style="width:7.2291in;height:.0208in" id="Horizontal_x0020_Line_x0020_1" src="cid:image002.png@01D6715F.867E1510"><o:p></o:p></p><div id="divRplyFwdMsg"><p class="MsoNormal"><b><span style="color:black">From:</span></b><span style="color:black"> users <users-bounces@lists.quantum-espresso.org> on behalf of Hien Vo <hvo@uchicago.edu><br><b>Sent:</b> Wednesday, August 12, 2020 7:39:07 PM<br><b>To:</b> users@lists.quantum-espresso.org<br><b>Subject:</b> [QE-users] Relaxing magnetic structures</span> <o:p></o:p></p><div><p class="MsoNormal"> <o:p></o:p></p></div></div><div><p class="MsoNormal">Hello QE community,<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">I’m trying to relax a-type afm LaCoO3 using the vc-relax option and I can’t seem to get P close to 0. What I notice is the vc-relax would get P to 0 but the final scf calculation at the relaxed structure would give me a large P using a different starting_magnetization from the one I used for the input. I’m including my input here (I’m calculating phonons with these so I’m trying to reduce the force and stress as much as possible) as well as relevant output from the run before final scf calculation and also the final scf calculation. Any tips would be greatly appreciated!<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">INPUT: <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">&CONTROL<o:p></o:p></p><p class="MsoNormal">calculation='vc-relax',<o:p></o:p></p><p class="MsoNormal">tprnfor=.TRUE.,<o:p></o:p></p><p class="MsoNormal">forc_conv_thr=1.0D-6,<o:p></o:p></p><p class="MsoNormal">etot_conv_thr=1.4D-9,<o:p></o:p></p><p class="MsoNormal">max_seconds=64800<o:p></o:p></p><p class="MsoNormal">/<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">&SYSTEM<o:p></o:p></p><p class="MsoNormal">ibrav=12,<o:p></o:p></p><p class="MsoNormal">celldm(1)=10.284016,celldm(2)=1.43711648,celldm(3)=1.011898,celldm(4)=-0.025604,<o:p></o:p></p><p class="MsoNormal">nat=20,ntyp=4,<o:p></o:p></p><p class="MsoNormal">occupations='smearing',degauss=0.0036,<o:p></o:p></p><p class="MsoNormal">ecutwfc=100,ecutrho=800,<o:p></o:p></p><p class="MsoNormal">nspin=2,starting_magnetization(2)=-0.7,starting_magnetization(3)=0.7,<o:p></o:p></p><p class="MsoNormal">lda_plus_u=.TRUE. Hubbard_U(2)=3<o:p></o:p></p><p class="MsoNormal">Hubbard_U(3)=3<o:p></o:p></p><p class="MsoNormal">/<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">&ELECTRONS<o:p></o:p></p><p class="MsoNormal">electron_maxstep=3000<o:p></o:p></p><p class="MsoNormal">mixing_beta=0.05D<o:p></o:p></p><p class="MsoNormal">conv_thr=1.4D-9<o:p></o:p></p><p class="MsoNormal">/<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">&IONS<o:p></o:p></p><p class="MsoNormal">trust_radius_ini=0.2<o:p></o:p></p><p class="MsoNormal">trust_radius_max=0.5<o:p></o:p></p><p class="MsoNormal">/<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">&CELL<o:p></o:p></p><p class="MsoNormal">/<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">ATOMIC_SPECIES<o:p></o:p></p><p class="MsoNormal">La 138.9055 La.pbe-spfn-kjpaw_psl.1.0.0.UPF<o:p></o:p></p><p class="MsoNormal">Co1 58.9332 Co.pbe-spn-kjpaw_psl.0.3.1.UPF<o:p></o:p></p><p class="MsoNormal">Co2 58.9332 Co.pbe-spn-kjpaw_psl.0.3.1.UPF<o:p></o:p></p><p class="MsoNormal">O 16.00 O.pbe-n-kjpaw_psl.1.0.0.UPF<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">ATOMIC_POSITIONS (crystal)<o:p></o:p></p><p class="MsoNormal">La 0.50000 0.25000 0.00000<o:p></o:p></p><p class="MsoNormal">La 0.50000 0.75000 0.00000<o:p></o:p></p><p class="MsoNormal">La 0.00000 0.75000 0.50000<o:p></o:p></p><p class="MsoNormal">La 0.00000 0.25000 0.50000<o:p></o:p></p><p class="MsoNormal">Co2 0.00000 0.00000 0.00000<o:p></o:p></p><p class="MsoNormal">Co1 0.00000 0.50000 0.00000<o:p></o:p></p><p class="MsoNormal">Co1 0.50000 0.50000 0.50000<o:p></o:p></p><p class="MsoNormal">Co2 0.50000 0.00000 0.50000<o:p></o:p></p><p class="MsoNormal">O 0.00000 0.25000 0.06296<o:p></o:p></p><p class="MsoNormal">O 0.00000 0.75000 0.93704<o:p></o:p></p><p class="MsoNormal">O 0.28148 0.96852 0.21852<o:p></o:p></p><p class="MsoNormal">O 0.71852 0.03148 0.78148<o:p></o:p></p><p class="MsoNormal">O 0.21852 0.03148 0.71852<o:p></o:p></p><p class="MsoNormal">O 0.78148 0.96852 0.28148<o:p></o:p></p><p class="MsoNormal">O 0.71852 0.53148 0.21852<o:p></o:p></p><p class="MsoNormal">O 0.28148 0.46852 0.78148<o:p></o:p></p><p class="MsoNormal">O 0.78148 0.46852 0.71852<o:p></o:p></p><p class="MsoNormal">O 0.21852 0.53148 0.28148<o:p></o:p></p><p class="MsoNormal">O 0.50000 0.75000 0.56296<o:p></o:p></p><p class="MsoNormal">O 0.50000 0.25000 0.43704<o:p></o:p></p><div style="border:none;border-bottom:solid windowtext 1.0pt;padding:0in 0in 1.0pt 0in"><p class="MsoNormal"><o:p> </o:p></p></div><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">OUTPUT OF RUN BEFORE FINAL SCF:<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Forces acting on atoms (cartesian axes, Ry/au):<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> atom 1 type 1 force = 0.00000012 -0.00000087 -0.00000173<o:p></o:p></p><p class="MsoNormal"> atom 2 type 1 force = -0.00000012 0.00000087 0.00000173<o:p></o:p></p><p class="MsoNormal"> atom 3 type 1 force = -0.00000012 0.00000087 -0.00000173<o:p></o:p></p><p class="MsoNormal"> atom 4 type 1 force = 0.00000012 -0.00000087 0.00000173<o:p></o:p></p><p class="MsoNormal"> atom 5 type 3 force = 0.00000000 0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 6 type 2 force = -0.00000000 0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 7 type 2 force = 0.00000000 -0.00000000 -0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 8 type 3 force = -0.00000000 -0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 9 type 4 force = 0.00000005 -0.00000028 0.00000287<o:p></o:p></p><p class="MsoNormal"> atom 10 type 4 force = -0.00000005 0.00000028 -0.00000287<o:p></o:p></p><p class="MsoNormal"> atom 11 type 4 force = 0.00000119 0.00000007 -0.00000115<o:p></o:p></p><p class="MsoNormal"> atom 12 type 4 force = -0.00000119 -0.00000007 0.00000115<o:p></o:p></p><p class="MsoNormal"> atom 13 type 4 force = -0.00000119 -0.00000007 -0.00000115<o:p></o:p></p><p class="MsoNormal"> atom 14 type 4 force = 0.00000119 0.00000007 0.00000115<o:p></o:p></p><p class="MsoNormal"> atom 15 type 4 force = -0.00000118 -0.00000098 -0.00000108<o:p></o:p></p><p class="MsoNormal"> atom 16 type 4 force = 0.00000118 0.00000098 0.00000108<o:p></o:p></p><p class="MsoNormal"> atom 17 type 4 force = 0.00000118 0.00000098 -0.00000108<o:p></o:p></p><p class="MsoNormal"> atom 18 type 4 force = -0.00000118 -0.00000098 0.00000108<o:p></o:p></p><p class="MsoNormal"> atom 19 type 4 force = -0.00000005 0.00000028 0.00000287<o:p></o:p></p><div style="border:none;border-bottom:solid windowtext 1.0pt;padding:0in 0in 0in 0in"><p class="MsoNormal"> atom 20 type 4 force = 0.00000005 -0.00000028 -0.00000287<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Computing stress (Cartesian axis) and pressure<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> total stress (Ry/bohr**3) (kbar) P= -0.00<o:p></o:p></p><p class="MsoNormal"> 0.00000000 0.00000000 0.00000000 0.00 0.00 0.00<o:p></o:p></p><p class="MsoNormal"> 0.00000000 -0.00000002 0.00000000 0.00 -0.00 0.00<o:p></o:p></p><p class="MsoNormal"> 0.00000000 0.00000000 -0.00000000 0.00 0.00 -0.00<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Message from routine bfgs:<o:p></o:p></p><p class="MsoNormal"> history already reset at previous step: stopping<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> bfgs converged in 30 scf cycles and 29 bfgs steps<o:p></o:p></p><p class="MsoNormal"> (criteria: energy < 1.4E-09 Ry, force < 1.0E-06Ry/Bohr, cell < 5.0E-01kbar)<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> End of BFGS Geometry Optimization<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Final enthalpy = -3840.8280670928 Ry<o:p></o:p></p><p class="MsoNormal">Begin final coordinates<o:p></o:p></p><p class="MsoNormal"> new unit-cell volume = 1540.07698 a.u.^3 ( 228.21586 Ang^3 )<o:p></o:p></p><p class="MsoNormal"> density = 7.15506 g/cm^3<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">CELL_PARAMETERS (alat= 10.28401600)<o:p></o:p></p><p class="MsoNormal"> 0.992999501 0.012644330 0.000000000<o:p></o:p></p><p class="MsoNormal"> -0.018068355 1.404995305 0.000000000<o:p></o:p></p><p class="MsoNormal"> 0.000000000 0.000000000 1.014750287<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">ATOMIC_POSITIONS (crystal)<o:p></o:p></p><p class="MsoNormal">La 0.499998392 0.250000173 -0.003228188<o:p></o:p></p><p class="MsoNormal">La 0.500001608 0.749999827 0.003228188<o:p></o:p></p><p class="MsoNormal">La 0.000001608 0.749999827 0.496771812<o:p></o:p></p><p class="MsoNormal">La -0.000001608 0.250000173 0.503228188<o:p></o:p></p><p class="MsoNormal">Co2 0.000000000 0.000000000 0.000000000<o:p></o:p></p><p class="MsoNormal">Co1 -0.000000000 0.500000000 0.000000000<o:p></o:p></p><p class="MsoNormal">Co1 0.500000000 0.500000000 0.500000000<o:p></o:p></p><p class="MsoNormal">Co2 0.500000000 0.000000000 0.500000000<o:p></o:p></p><p class="MsoNormal">O 0.000000937 0.250000107 0.072799662<o:p></o:p></p><p class="MsoNormal">O -0.000000937 0.749999893 0.927200338<o:p></o:p></p><p class="MsoNormal">O 0.250055043 0.962702639 0.249942716<o:p></o:p></p><p class="MsoNormal">O 0.749944957 0.037297361 0.750057284<o:p></o:p></p><p class="MsoNormal">O 0.249944957 0.037297361 0.749942716<o:p></o:p></p><p class="MsoNormal">O 0.750055043 0.962702639 0.250057284<o:p></o:p></p><p class="MsoNormal">O 0.749947635 0.537297843 0.249945383<o:p></o:p></p><p class="MsoNormal">O 0.250052365 0.462702157 0.750054617<o:p></o:p></p><p class="MsoNormal">O 0.750052365 0.462702157 0.749945383<o:p></o:p></p><p class="MsoNormal">O 0.249947635 0.537297843 0.250054617<o:p></o:p></p><p class="MsoNormal">O 0.499999063 0.749999893 0.572799662<o:p></o:p></p><p class="MsoNormal">O 0.500000937 0.250000107 0.427200338<o:p></o:p></p><p class="MsoNormal">End final coordinates<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p></div><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">OUTPUT FROM FINAL SCF RUN: <o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> A final scf calculation at the relaxed structure.<o:p></o:p></p><p class="MsoNormal"> The G-vectors are recalculated for the final unit cell<o:p></o:p></p><p class="MsoNormal"> Results may differ from those at the preceding step.<o:p></o:p></p><p class="MsoNormal"> Parallelization info<o:p></o:p></p><p class="MsoNormal"> --------------------<o:p></o:p></p><p class="MsoNormal"> sticks: dense smooth PW G-vecs: dense smooth PW<o:p></o:p></p><p class="MsoNormal"> Min 938 469 129 58844 20811 2997<o:p></o:p></p><p class="MsoNormal"> Max 939 471 130 58845 20812 2999<o:p></o:p></p><p class="MsoNormal"> Sum 9385 4699 1291 588445 208113 29981<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> bravais-lattice index = 12<o:p></o:p></p><p class="MsoNormal"> lattice parameter (alat) = 10.2840 a.u.<o:p></o:p></p><p class="MsoNormal"> unit-cell volume = 1540.0770 (a.u.)^3<o:p></o:p></p><p class="MsoNormal"> number of atoms/cell = 20<o:p></o:p></p><p class="MsoNormal"> number of atomic types = 4<o:p></o:p></p><p class="MsoNormal"> number of electrons = 184.00<o:p></o:p></p><p class="MsoNormal"> number of Kohn-Sham states= 110<o:p></o:p></p><p class="MsoNormal"> kinetic-energy cutoff = 100.0000 Ry<o:p></o:p></p><p class="MsoNormal"> charge density cutoff = 800.0000 Ry<o:p></o:p></p><p class="MsoNormal"> convergence threshold = 2.3E-11<o:p></o:p></p><p class="MsoNormal"> mixing beta = 0.0500<o:p></o:p></p><p class="MsoNormal"> number of iterations used = 8 plain mixing<o:p></o:p></p><p class="MsoNormal"> Exchange-correlation = SLA PW PBX PBC ( 1 4 3 4 0 0)<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> celldm(1)= 10.213861 celldm(2)= 1.416338 celldm(3)= 1.019956<o:p></o:p></p><p class="MsoNormal"> celldm(4)= -0.007299 celldm(5)= 0.000000 celldm(6)= 0.000000<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">…..<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> atomic species valence mass pseudopotential<o:p></o:p></p><p class="MsoNormal"> La 11.00 138.90550 La( 1.00)<o:p></o:p></p><p class="MsoNormal"> Co1 17.00 58.93320 Co( 1.00)<o:p></o:p></p><p class="MsoNormal"> Co2 17.00 58.93320 Co( 1.00)<o:p></o:p></p><p class="MsoNormal"> O 6.00 16.00000 O ( 1.00)<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Starting magnetic structure <o:p></o:p></p><p class="MsoNormal"> atomic species magnetization<o:p></o:p></p><p class="MsoNormal"> La -0.000<o:p></o:p></p><p class="MsoNormal"> Co1 -0.069<o:p></o:p></p><p class="MsoNormal"> Co2 0.069<o:p></o:p></p><p class="MsoNormal"> O 0.000<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">…..<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Forces acting on atoms (cartesian axes, Ry/au):<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> atom 1 type 1 force = -0.00001228 0.00097281 0.00036384<o:p></o:p></p><p class="MsoNormal"> atom 2 type 1 force = 0.00001228 -0.00097281 -0.00036384<o:p></o:p></p><p class="MsoNormal"> atom 3 type 1 force = 0.00001228 -0.00097281 0.00036384<o:p></o:p></p><p class="MsoNormal"> atom 4 type 1 force = -0.00001228 0.00097281 -0.00036384<o:p></o:p></p><p class="MsoNormal"> atom 5 type 3 force = 0.00000000 0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 6 type 2 force = 0.00000000 0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 7 type 2 force = 0.00000000 0.00000000 -0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 8 type 3 force = 0.00000000 0.00000000 0.00000000<o:p></o:p></p><p class="MsoNormal"> atom 9 type 4 force = 0.00000007 -0.00000556 0.00123004<o:p></o:p></p><p class="MsoNormal"> atom 10 type 4 force = -0.00000007 0.00000556 -0.00123004<o:p></o:p></p><p class="MsoNormal"> atom 11 type 4 force = -0.00000878 0.00068623 0.00000095<o:p></o:p></p><p class="MsoNormal"> atom 12 type 4 force = 0.00000878 -0.00068623 -0.00000095<o:p></o:p></p><p class="MsoNormal"> atom 13 type 4 force = 0.00000878 -0.00068623 0.00000095<o:p></o:p></p><p class="MsoNormal"> atom 14 type 4 force = -0.00000878 0.00068623 -0.00000095<o:p></o:p></p><p class="MsoNormal"> atom 15 type 4 force = 0.00000535 -0.00045735 0.00000063<o:p></o:p></p><p class="MsoNormal"> atom 16 type 4 force = -0.00000535 0.00045735 -0.00000063<o:p></o:p></p><p class="MsoNormal"> atom 17 type 4 force = -0.00000535 0.00045735 0.00000063<o:p></o:p></p><p class="MsoNormal"> atom 18 type 4 force = 0.00000535 -0.00045735 -0.00000063<o:p></o:p></p><p class="MsoNormal"> atom 19 type 4 force = -0.00000007 0.00000556 0.00123004<o:p></o:p></p><p class="MsoNormal"> atom 20 type 4 force = 0.00000007 -0.00000556 -0.00123004<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Total force = 0.003618 Total SCF correction = 0.000003<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> Computing stress (Cartesian axis) and pressure<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"> total stress (Ry/bohr**3) (kbar) P= 5.83<o:p></o:p></p><p class="MsoNormal"> 0.00004353 0.00000056 0.00000000 6.40 0.08 0.00<o:p></o:p></p><p class="MsoNormal"> 0.00000056 0.00002911 0.00000000 0.08 4.28 0.00<o:p></o:p></p><p class="MsoNormal"> 0.00000000 0.00000000 0.00004631 0.00 0.00 6.81<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Best,<o:p></o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal">Hien Vo<o:p></o:p></p></div><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p><p class="MsoNormal"><o:p> </o:p></p></div></body></html>