<div dir="ltr"><div>output file</div><div>Program PWSCF v.6.3 starts on  7Jul2020 at 13:32:49 <br><br>   This program is part of the open-source Quantum ESPRESSO suite<br>   for quantum simulation of materials; please cite<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);<br>     URL <a href="http://www.quantum-espresso.org">http://www.quantum-espresso.org</a>", <br>   in publications or presentations arising from this work. More details at<br>   <a href="http://www.quantum-espresso.org/quote">http://www.quantum-espresso.org/quote</a><br><br>   Parallel version (MPI), running on   1 processors<br><br>   MPI processes distributed on   1 nodes<br>   Waiting for input...<br>   Reading input from standard input<br><br>   Current dimensions of program PWSCF are:<br>   Max number of different atomic species (ntypx) = 10<br>   Max number of k-points (npk) =  40000<br>   Max angular momentum in pseudopotentials (lmaxx) =  3<br>        file Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF: wavefunction(s)  4S 3D renormalized<br>        file Sb.pbe-n-kjpaw_psl.1.0.0.UPF: wavefunction(s)  5S renormalized<br><br>   Subspace diagonalization in iterative solution of the eigenvalue problem:<br>   a serial algorithm will be used<br><br>   Found symmetry operation: I + (  0.5000  0.0000  0.0000)<br>   This is a supercell, fractional translations are disabled<br><br>   G-vector sticks info<br>   --------------------<br>   sticks:  dense  smooth   PW   G-vecs:   dense  smooth    PW<br>   Sum    20017  15937  4093        2328127  1647611  215359<br><br><br><br>   bravais-lattice index   =       4<br>   lattice parameter (alat)  =    46.2265  a.u.<br>   unit-cell volume      =  86924.5388 (a.u.)^3<br>   number of atoms/cell    =      24<br>   number of atomic types   =       2<br>   number of electrons    =    204.00<br>   number of Kohn-Sham states=      102<br>   kinetic-energy cutoff   =    27.0000  Ry<br>   charge density cutoff   =   136.0000  Ry<br>   convergence threshold   =    1.0E-06<br>   mixing beta        =    0.6000<br>   number of iterations used =       8  plain   mixing<br>   Exchange-correlation    = SLA PW PBX PBC ( 1  4  3  4 0 0)<br><br>   celldm(1)=  46.226480  celldm(2)=  0.000000  celldm(3)=  1.016107<br>   celldm(4)=  0.000000  celldm(5)=  0.000000  celldm(6)=  0.000000<br><br>   crystal axes: (cart. coord. in units of alat)<br>        a(1) = (  1.000000  0.000000  0.000000 )  <br>        a(2) = (  -0.500000  0.866025  0.000000 )  <br>        a(3) = (  0.000000  0.000000  1.016107 )  <br><br>   reciprocal axes: (cart. coord. in units 2 pi/alat)<br>        b(1) = (  1.000000  0.577350 -0.000000 )  <br>        b(2) = (  0.000000  1.154701  0.000000 )  <br>        b(3) = (  0.000000 -0.000000  0.984149 )  <br><br><br>   PseudoPot. # 1 for Zn read from file:<br>   ./Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 7217f78799bfc6aaa3738bf4cd09bafd<br>   Pseudo is Projector augmented-wave + core cor, Zval = 12.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1201 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   PseudoPot. # 2 for Sb read from file:<br>   ./Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 8701ebd98ea0ddfeeee3c5089d2d8acc<br>   Pseudo is Projector augmented-wave + core cor, Zval =  5.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1243 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   atomic species  valence   mass   pseudopotential<br>    Zn       12.00   60.00000   Zn( 1.00)<br>    Sb       5.00  102.00000   Sb( 1.00)<br><br>   No symmetry found<br><br><br><br>  Cartesian axes<br><br>   site n.   atom          positions (alat units)<br>     1      Zn  tau(  1) = (  0.0669875  0.7499997  0.0163664  )<br>     2      Zn  tau(  2) = (  -0.4330125  0.7499997  0.0163664  )<br>     3      Zn  tau(  3) = (  0.5080535  0.0000000  0.8799737  )<br>     4      Zn  tau(  4) = (  0.0080535  0.0000000  0.8799737  )<br>     5      Zn  tau(  5) = (  0.4249590  0.0139491  0.0000000  )<br>     6      Zn  tau(  6) = (  0.9249590  0.0139491  0.0000000  )<br>     7      Zn  tau(  7) = (  0.5669875  0.4330127  0.4916869  )<br>     8      Zn  tau(  8) = (  0.0669875  0.4330127  0.4916869  )<br>     9      Zn  tau(  9) = (  0.4249590  0.5490385  0.5080533  )<br>    10      Zn  tau(  10) = (  -0.0750410  0.5490385  0.5080533  )<br>    11      Zn  tau(  11) = (  0.5080535  0.4190636  0.6441862  )<br>    12      Zn  tau(  12) = (  0.0080535  0.4190636  0.6441862  )<br>    13      Sb  tau(  13) = (  0.4330125  0.1160258  0.9997402  )<br>    14      Sb  tau(  14) = (  -0.0669875  0.1160258  0.9997402  )<br>    15      Sb  tau(  15) = (  0.4919465  0.0000000  0.1361329  )<br>    16      Sb  tau(  16) = (  0.9919465  0.0000000  0.1361329  )<br>    17      Sb  tau(  17) = (  0.0750410  0.8520763  0.0000000  )<br>    18      Sb  tau(  18) = (  -0.4249590  0.8520763  0.0000000  )<br>    19      Sb  tau(  19) = (  -0.0669875  0.4330127  0.5244197  )<br>    20      Sb  tau(  20) = (  0.4330125  0.4330127  0.5244197  )<br>    21      Sb  tau(  21) = (  0.0750410  0.3169869  0.5080533  )<br>    22      Sb  tau(  22) = (  0.5750410  0.3169869  0.5080533  )<br>    23      Sb  tau(  23) = (  -0.0080535  0.4469618  0.3719204  )<br>    24      Sb  tau(  24) = (  0.4919465  0.4469618  0.3719204  )<br><br>   number of k points=   4<br>            cart. coord. in units 2pi/alat<br>    k(   1) = (  0.0000000  0.0000000  0.0000000), wk =  1.0000000<br>    k(   2) = (  -0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   3) = (  0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   4) = (  0.0000000  -0.5773503  0.0000000), wk =  0.3333333<br><br>   Dense  grid:  2328127 G-vectors   FFT dimensions: ( 180, 180, 180)<br><br>   Smooth grid:  1647611 G-vectors   FFT dimensions: ( 160, 160, 160)<br><br>   Estimated max dynamical RAM per process >    11.17 GB<br><br>   Check: negative/imaginary core charge=  -0.000002   0.000000<br><br>   Initial potential from superposition of free atoms<br>   Check: negative starting charge=  -0.128417<br><br>   starting charge  203.94778, renormalised to  204.00000</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jul 7, 2020 at 1:47 PM Neelam Swarnkar <<a href="mailto:neelamswarnkar35@gmail.com">neelamswarnkar35@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>input file</div><div>&control<br>  calculation = 'scf',<br>  prefix = 'Zn4Sb3_exc1',<br>  outdir = './tmp/'<br>  pseudo_dir = './'<br>  verbosity = 'low' <br><br> /<br> &system<br>  ibrav =  4,<br>  celldm(1)= 46.2264804, <br>  celldm(3)= 1.016106614,<br>  nat =  24, <br>  ntyp = 2,<br>  <br>  ecutwfc = 27,<br>  ecutrho = 136<br>  <br> /<br> &electrons<br>  mixing_beta = 0.6<br> /<br> <br> ATOMIC_SPECIES<br> Zn 60.00  Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br> Sb 102.00 Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br><br> <br>ATOMIC_POSITIONS {crystal}<br> Zn  0.5000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.0000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.5080535000000000  0.0000000000000000  0.8660250000000000<br> Zn  0.0080534999999999  0.0000000000000000  0.8660250000000000<br> Zn  0.4330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.9330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.8169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.3169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.7419465000000001  0.6339750000000000  0.5000000000000000<br> Zn  0.2419465000000000  0.6339750000000000  0.5000000000000000<br> Zn  0.7500000000000000  0.4838930000000000  0.6339750000000000<br> Zn  0.2500000000000000  0.4838930000000000  0.6339750000000000<br> Sb  0.5000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.0000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.4919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.9919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.5669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.0669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.1830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.6830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.2580535000000000  0.3660250000000000  0.5000000000000000<br> Sb  0.7580534999999999  0.3660250000000000  0.5000000000000000<br> Sb  0.2500000000000000  0.5161070000000000  0.3660250000000000<br> Sb  0.7500000000000000  0.5161070000000000  0.3660250000000000<br><br><br>K_POINTS (automatic)<br> 2 1 1 0 0 0</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jul 7, 2020 at 1:28 PM Neelam Swarnkar <<a href="mailto:neelamswarnkar35@gmail.com" target="_blank">neelamswarnkar35@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><br></div><div>output file</div><div><br></div><div>This program is part of the open-source Quantum ESPRESSO suite<br>   for quantum simulation of materials; please cite<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);<br>     URL <a href="http://www.quantum-espresso.org" target="_blank">http://www.quantum-espresso.org</a>", <br>   in publications or presentations arising from this work. More details at<br>   <a href="http://www.quantum-espresso.org/quote" target="_blank">http://www.quantum-espresso.org/quote</a><br><br>   Parallel version (MPI), running on   1 processors<br><br>   MPI processes distributed on   1 nodes<br>   Waiting for input...<br>   Reading input from standard input<br><br>   Current dimensions of program PWSCF are:<br>   Max number of different atomic species (ntypx) = 10<br>   Max number of k-points (npk) =  40000<br>   Max angular momentum in pseudopotentials (lmaxx) =  3<br>        file Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF: wavefunction(s)  4S 3D renormalized<br>        file Sb.pbe-n-kjpaw_psl.1.0.0.UPF: wavefunction(s)  5S renormalized<br><br>   Subspace diagonalization in iterative solution of the eigenvalue problem:<br>   a serial algorithm will be used<br><br>   Found symmetry operation: I + (  0.5000  0.0000  0.0000)<br>   This is a supercell, fractional translations are disabled<br><br>   G-vector sticks info<br>   --------------------<br>   sticks:  dense  smooth   PW   G-vecs:   dense  smooth    PW<br>   Sum    20017  15937  4093        2328127  1647611  215359<br><br><br><br>   bravais-lattice index   =       4<br>   lattice parameter (alat)  =    46.2265  a.u.<br>   unit-cell volume      =  86924.5388 (a.u.)^3<br>   number of atoms/cell    =      24<br>   number of atomic types   =       2<br>   number of electrons    =    204.00<br>   number of Kohn-Sham states=      122<br>   kinetic-energy cutoff   =    27.0000  Ry<br>   charge density cutoff   =   136.0000  Ry<br>   convergence threshold   =    1.0E-06<br>   mixing beta        =    0.6000<br>   number of iterations used =       8  plain   mixing<br>   Exchange-correlation    = SLA PW PBX PBC ( 1  4  3  4 0 0)<br><br>   celldm(1)=  46.226480  celldm(2)=  0.000000  celldm(3)=  1.016107<br>   celldm(4)=  0.000000  celldm(5)=  0.000000  celldm(6)=  0.000000<br><br>   crystal axes: (cart. coord. in units of alat)<br>        a(1) = (  1.000000  0.000000  0.000000 )  <br>        a(2) = (  -0.500000  0.866025  0.000000 )  <br>        a(3) = (  0.000000  0.000000  1.016107 )  <br><br>   reciprocal axes: (cart. coord. in units 2 pi/alat)<br>        b(1) = (  1.000000  0.577350 -0.000000 )  <br>        b(2) = (  0.000000  1.154701  0.000000 )  <br>        b(3) = (  0.000000 -0.000000  0.984149 )  <br><br><br>   PseudoPot. # 1 for Zn read from file:<br>   ./Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 7217f78799bfc6aaa3738bf4cd09bafd<br>   Pseudo is Projector augmented-wave + core cor, Zval = 12.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1201 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   PseudoPot. # 2 for Sb read from file:<br>   ./Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 8701ebd98ea0ddfeeee3c5089d2d8acc<br>   Pseudo is Projector augmented-wave + core cor, Zval =  5.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1243 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   atomic species  valence   mass   pseudopotential<br>    Zn       12.00   60.00000   Zn( 1.00)<br>    Sb       5.00  102.00000   Sb( 1.00)<br><br>   No symmetry found<br><br><br><br>  Cartesian axes<br><br>   site n.   atom          positions (alat units)<br>     1      Zn  tau(  1) = (  0.0669875  0.7499997  0.0163664  )<br>     2      Zn  tau(  2) = (  -0.4330125  0.7499997  0.0163664  )<br>     3      Zn  tau(  3) = (  0.5080535  0.0000000  0.8799737  )<br>     4      Zn  tau(  4) = (  0.0080535  0.0000000  0.8799737  )<br>     5      Zn  tau(  5) = (  0.4249590  0.0139491  0.0000000  )<br>     6      Zn  tau(  6) = (  0.9249590  0.0139491  0.0000000  )<br>     7      Zn  tau(  7) = (  0.5669875  0.4330127  0.4916869  )<br>     8      Zn  tau(  8) = (  0.0669875  0.4330127  0.4916869  )<br>     9      Zn  tau(  9) = (  0.4249590  0.5490385  0.5080533  )<br>    10      Zn  tau(  10) = (  -0.0750410  0.5490385  0.5080533  )<br>    11      Zn  tau(  11) = (  0.5080535  0.4190636  0.6441862  )<br>    12      Zn  tau(  12) = (  0.0080535  0.4190636  0.6441862  )<br>    13      Sb  tau(  13) = (  0.4330125  0.1160258  0.9997402  )<br>    14      Sb  tau(  14) = (  -0.0669875  0.1160258  0.9997402  )<br>    15      Sb  tau(  15) = (  0.4919465  0.0000000  0.1361329  )<br>    16      Sb  tau(  16) = (  0.9919465  0.0000000  0.1361329  )<br>    17      Sb  tau(  17) = (  0.0750410  0.8520763  0.0000000  )<br>    18      Sb  tau(  18) = (  -0.4249590  0.8520763  0.0000000  )<br>    19      Sb  tau(  19) = (  -0.0669875  0.4330127  0.5244197  )<br>    20      Sb  tau(  20) = (  0.4330125  0.4330127  0.5244197  )<br>    21      Sb  tau(  21) = (  0.0750410  0.3169869  0.5080533  )<br>    22      Sb  tau(  22) = (  0.5750410  0.3169869  0.5080533  )<br>    23      Sb  tau(  23) = (  -0.0080535  0.4469618  0.3719204  )<br>    24      Sb  tau(  24) = (  0.4919465  0.4469618  0.3719204  )<br><br>   number of k points=   4  gaussian smearing, width (Ry)=  0.0200<br>            cart. coord. in units 2pi/alat<br>    k(   1) = (  0.0000000  0.0000000  0.0000000), wk =  1.0000000<br>    k(   2) = (  -0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   3) = (  0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   4) = (  0.0000000  -0.5773503  0.0000000), wk =  0.3333333<br><br>   Dense  grid:  2328127 G-vectors   FFT dimensions: ( 180, 180, 180)<br><br>   Smooth grid:  1647611 G-vectors   FFT dimensions: ( 160, 160, 160)<br><br>   Estimated max dynamical RAM per process >    11.48 GB<br><br>   Check: negative/imaginary core charge=  -0.000002   0.000000<br><br>   Initial potential from superposition of free atoms<br>   Check: negative starting charge=  -0.128417</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jul 7, 2020 at 1:27 PM Neelam Swarnkar <<a href="mailto:neelamswarnkar35@gmail.com" target="_blank">neelamswarnkar35@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>Dear Expert and all</div><div><br></div><div>Here i am sharing my input file <br></div><div>&control<br>  calculation = 'scf',<br>  prefix = 'Zn4Sb3_exc1',<br>  outdir = './tmp/'<br>  pseudo_dir = './'<br>  verbosity = 'low' <br><br> /<br> &system<br>  ibrav =  4,<br>  celldm(1)= 46.2264804, <br>  celldm(3)= 1.016106614,<br>  nat =  24, <br>  ntyp = 2,<br>  occupations='smearing', degauss=0.02,<br>  ecutwfc = 27,<br>  ecutrho = 136<br>  <br> /<br> &electrons<br>  mixing_beta = 0.6<br> /<br> <br> ATOMIC_SPECIES<br> Zn 60.00  Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br> Sb 102.00 Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br><br> <br>ATOMIC_POSITIONS {crystal}<br> Zn  0.5000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.0000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.5080535000000000  0.0000000000000000  0.8660250000000000<br> Zn  0.0080534999999999  0.0000000000000000  0.8660250000000000<br> Zn  0.4330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.9330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.8169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.3169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.7419465000000001  0.6339750000000000  0.5000000000000000<br> Zn  0.2419465000000000  0.6339750000000000  0.5000000000000000<br> Zn  0.7500000000000000  0.4838930000000000  0.6339750000000000<br> Zn  0.2500000000000000  0.4838930000000000  0.6339750000000000<br> Sb  0.5000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.0000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.4919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.9919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.5669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.0669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.1830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.6830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.2580535000000000  0.3660250000000000  0.5000000000000000<br> Sb  0.7580534999999999  0.3660250000000000  0.5000000000000000<br> Sb  0.2500000000000000  0.5161070000000000  0.3660250000000000<br> Sb  0.7500000000000000  0.5161070000000000  0.3660250000000000<br><br><br>K_POINTS (automatic)<br> 2 1 1 0 0 0</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Jul 6, 2020 at 5:49 PM Neelam Swarnkar <<a href="mailto:neelamswarnkar35@gmail.com" target="_blank">neelamswarnkar35@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div>I am sharing my input and output files here. also the screenshot of error .<br></div><div><br></div><div>input file <br></div><div><br></div><div>&control<br>  calculation = 'scf',<br>  prefix = 'Zn4Sb3_exc1',<br>  outdir = './tmp/'<br>  pseudo_dir = './'<br>  verbosity = 'low' <br><br> /<br> &system<br>  ibrav =  4,<br>  celldm(1)= 46.2264804, <br>  celldm(3)= 1.016106614,<br>  nat =  24, <br>  ntyp = 2,<br>  occupations='smearing', degauss=0.02,<br>  ecutwfc = 27,<br>  ecutrho = 136<br>  <br> /<br> &electrons<br>  mixing_beta = 0.6<br> /<br> <br> ATOMIC_SPECIES<br> Zn 60.00  Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br> Sb 102.00 Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br><br> <br>ATOMIC_POSITIONS {crystal}<br> Zn  0.5000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.0000000000000000  0.8660250000000000  0.0161070000000001<br> Zn  0.5080535000000000  0.0000000000000000  0.8660250000000000<br> Zn  0.0080534999999999  0.0000000000000000  0.8660250000000000<br> Zn  0.4330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.9330125000000000  0.0161070000000001  0.0000000000000000<br> Zn  0.8169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.3169875000000000  0.5000000000000000  0.4838930000000000<br> Zn  0.7419465000000001  0.6339750000000000  0.5000000000000000<br> Zn  0.2419465000000000  0.6339750000000000  0.5000000000000000<br> Zn  0.7500000000000000  0.4838930000000000  0.6339750000000000<br> Zn  0.2500000000000000  0.4838930000000000  0.6339750000000000<br> Sb  0.5000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.0000000000000000  0.1339750000000000  0.9838929999999999<br> Sb  0.4919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.9919465000000000  0.0000000000000000  0.1339750000000000<br> Sb  0.5669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.0669875000000000  0.9838929999999999  0.0000000000000000<br> Sb  0.1830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.6830125000000000  0.5000000000000000  0.5161070000000000<br> Sb  0.2580535000000000  0.3660250000000000  0.5000000000000000<br> Sb  0.7580534999999999  0.3660250000000000  0.5000000000000000<br> Sb  0.2500000000000000  0.5161070000000000  0.3660250000000000<br> Sb  0.7500000000000000  0.5161070000000000  0.3660250000000000<br><br><br>K_POINTS (automatic)<br> 2 1 1 0 0 0</div><div><br></div><div><br></div><div>output <br></div><div>Program PWSCF v.6.3 starts on  6Jul2020 at 14:29:48 <br><br>   This program is part of the open-source Quantum ESPRESSO suite<br>   for quantum simulation of materials; please cite<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009);<br>     "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);<br>     URL <a href="http://www.quantum-espresso.org" target="_blank">http://www.quantum-espresso.org</a>", <br>   in publications or presentations arising from this work. More details at<br>   <a href="http://www.quantum-espresso.org/quote" target="_blank">http://www.quantum-espresso.org/quote</a><br><br>   Parallel version (MPI), running on   1 processors<br><br>   MPI processes distributed on   1 nodes<br>   Waiting for input...<br>   Reading input from standard input<br><br>   Current dimensions of program PWSCF are:<br>   Max number of different atomic species (ntypx) = 10<br>   Max number of k-points (npk) =  40000<br>   Max angular momentum in pseudopotentials (lmaxx) =  3<br>        file Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF: wavefunction(s)  4S 3D renormalized<br>        file Sb.pbe-n-kjpaw_psl.1.0.0.UPF: wavefunction(s)  5S renormalized<br><br>   Subspace diagonalization in iterative solution of the eigenvalue problem:<br>   a serial algorithm will be used<br><br>   Found symmetry operation: I + (  0.5000  0.0000  0.0000)<br>   This is a supercell, fractional translations are disabled<br><br>   G-vector sticks info<br>   --------------------<br>   sticks:  dense  smooth   PW   G-vecs:   dense  smooth    PW<br>   Sum    20017  15937  4093        2328127  1647611  215359<br><br><br><br>   bravais-lattice index   =       4<br>   lattice parameter (alat)  =    46.2265  a.u.<br>   unit-cell volume      =  86924.5388 (a.u.)^3<br>   number of atoms/cell    =      24<br>   number of atomic types   =       2<br>   number of electrons    =    204.00<br>   number of Kohn-Sham states=      122<br>   kinetic-energy cutoff   =    27.0000  Ry<br>   charge density cutoff   =   136.0000  Ry<br>   convergence threshold   =    1.0E-06<br>   mixing beta        =    0.6000<br>   number of iterations used =       8  plain   mixing<br>   Exchange-correlation    = SLA PW PBX PBC ( 1  4  3  4 0 0)<br><br>   celldm(1)=  46.226480  celldm(2)=  0.000000  celldm(3)=  1.016107<br>   celldm(4)=  0.000000  celldm(5)=  0.000000  celldm(6)=  0.000000<br><br>   crystal axes: (cart. coord. in units of alat)<br>        a(1) = (  1.000000  0.000000  0.000000 )  <br>        a(2) = (  -0.500000  0.866025  0.000000 )  <br>        a(3) = (  0.000000  0.000000  1.016107 )  <br><br>   reciprocal axes: (cart. coord. in units 2 pi/alat)<br>        b(1) = (  1.000000  0.577350 -0.000000 )  <br>        b(2) = (  0.000000  1.154701  0.000000 )  <br>        b(3) = (  0.000000 -0.000000  0.984149 )  <br><br><br>   PseudoPot. # 1 for Zn read from file:<br>   ./Zn.pbe-dnl-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 7217f78799bfc6aaa3738bf4cd09bafd<br>   Pseudo is Projector augmented-wave + core cor, Zval = 12.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1201 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   PseudoPot. # 2 for Sb read from file:<br>   ./Sb.pbe-n-kjpaw_psl.1.0.0.UPF<br>   MD5 check sum: 8701ebd98ea0ddfeeee3c5089d2d8acc<br>   Pseudo is Projector augmented-wave + core cor, Zval =  5.0<br>   Generated using "atomic" code by A. Dal Corso v.6.2.2<br>   Shape of augmentation charge: PSQ<br>   Using radial grid of 1243 points,  6 beta functions with: <br>        l(1) =  0<br>        l(2) =  0<br>        l(3) =  1<br>        l(4) =  1<br>        l(5) =  2<br>        l(6) =  2<br>   Q(r) pseudized with 0 coefficients <br><br><br>   atomic species  valence   mass   pseudopotential<br>    Zn       12.00   60.00000   Zn( 1.00)<br>    Sb       5.00  102.00000   Sb( 1.00)<br><br>   No symmetry found<br><br><br><br>  Cartesian axes<br><br>   site n.   atom          positions (alat units)<br>     1      Zn  tau(  1) = (  0.0669875  0.7499997  0.0163664  )<br>     2      Zn  tau(  2) = (  -0.4330125  0.7499997  0.0163664  )<br>     3      Zn  tau(  3) = (  0.5080535  0.0000000  0.8799737  )<br>     4      Zn  tau(  4) = (  0.0080535  0.0000000  0.8799737  )<br>     5      Zn  tau(  5) = (  0.4249590  0.0139491  0.0000000  )<br>     6      Zn  tau(  6) = (  0.9249590  0.0139491  0.0000000  )<br>     7      Zn  tau(  7) = (  0.5669875  0.4330127  0.4916869  )<br>     8      Zn  tau(  8) = (  0.0669875  0.4330127  0.4916869  )<br>     9      Zn  tau(  9) = (  0.4249590  0.5490385  0.5080533  )<br>    10      Zn  tau(  10) = (  -0.0750410  0.5490385  0.5080533  )<br>    11      Zn  tau(  11) = (  0.5080535  0.4190636  0.6441862  )<br>    12      Zn  tau(  12) = (  0.0080535  0.4190636  0.6441862  )<br>    13      Sb  tau(  13) = (  0.4330125  0.1160258  0.9997402  )<br>    14      Sb  tau(  14) = (  -0.0669875  0.1160258  0.9997402  )<br>    15      Sb  tau(  15) = (  0.4919465  0.0000000  0.1361329  )<br>    16      Sb  tau(  16) = (  0.9919465  0.0000000  0.1361329  )<br>    17      Sb  tau(  17) = (  0.0750410  0.8520763  0.0000000  )<br>    18      Sb  tau(  18) = (  -0.4249590  0.8520763  0.0000000  )<br>    19      Sb  tau(  19) = (  -0.0669875  0.4330127  0.5244197  )<br>    20      Sb  tau(  20) = (  0.4330125  0.4330127  0.5244197  )<br>    21      Sb  tau(  21) = (  0.0750410  0.3169869  0.5080533  )<br>    22      Sb  tau(  22) = (  0.5750410  0.3169869  0.5080533  )<br>    23      Sb  tau(  23) = (  -0.0080535  0.4469618  0.3719204  )<br>    24      Sb  tau(  24) = (  0.4919465  0.4469618  0.3719204  )<br><br>   number of k points=   4  gaussian smearing, width (Ry)=  0.0200<br>            cart. coord. in units 2pi/alat<br>    k(   1) = (  0.0000000  0.0000000  0.0000000), wk =  1.0000000<br>    k(   2) = (  -0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   3) = (  0.5000000  -0.2886751  0.0000000), wk =  0.3333333<br>    k(   4) = (  0.0000000  -0.5773503  0.0000000), wk =  0.3333333<br><br>   Dense  grid:  2328127 G-vectors   FFT dimensions: ( 180, 180, 180)<br><br>   Smooth grid:  1647611 G-vectors   FFT dimensions: ( 160, 160, 160)<br><br>   Estimated max dynamical RAM per process >    11.48 GB<br><br>   Check: negative/imaginary core charge=  -0.000002   0.000000<br><br>   Initial potential from superposition of free atoms<br>   Check: negative starting charge=  -0.128417<br></div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Jul 6, 2020 at 3:39 PM Oleksandr Motornyi <<a href="mailto:oleksandr.motornyi@polytechnique.edu" target="_blank">oleksandr.motornyi@polytechnique.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div>
<p>Dear Neelam</p>
<p>Other than this, it would be useful if you could also show the
in/output files of your system. While it does not seem large the
memory usage depends on the atoms/pseudopotentials you are using,
size of the vacuum (if any).</p>
<p>Best<br>
</p>
<p>Oleksandr<br>
</p>
<div>On 06/07/2020 11:52, Michal Krompiec
wrote:<br>
</div>
<blockquote type="cite">
<div dir="ltr">Dear Neelam,
<div>I am by no means an expert, but from my limited experience
I can say that 4GB of RAM is not a lot, to put it mildly - but
at the same time, your system isn't large. In this case, I
wouldn't use any parallelization on k-points (pw.x -npool 1)
and make use of symmetry as much as possible (correct ibrav
instead of ibrav=0). You can save memory by reducing ecutwfc
(at the expense of accuracy) - so try choosing
pseudopotentials which give you desired accuracy at the lowest
ecutwfc (use <a href="https://www.materialscloud.org/discover/sssp" target="_blank">https://www.materialscloud.org/discover/sssp</a> to
guide you).</div>
<div>Best,</div>
<div>Michal</div>
</div>
<br>
<div class="gmail_quote">
<div dir="ltr" class="gmail_attr">On Mon, 6 Jul 2020 at 10:27,
Neelam Swarnkar <<a href="mailto:neelamswarnkar35@gmail.com" target="_blank">neelamswarnkar35@gmail.com</a>>
wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
<div dir="ltr">
<div>Dear expert and all<br>
</div>
<div><br>
</div>
<div>I am making the supercell of 2x1x1 total 24 no of
atoms, and perform scf calculation .but there is memory
related problem currently i am using 4gb RAM. <br>
</div>
<div><br>
</div>
<div>What can i do to solve this problem?</div>
<div><br>
</div>
<div>Thanks in advance <br>
</div>
<div>Neelam</div>
<div><br>
</div>
</div>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/quantum-espresso" rel="noreferrer" target="_blank">www.max-centre.eu/quantum-espresso</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote>
</div>
<br>
<fieldset></fieldset>
<pre>_______________________________________________
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/quantum-espresso" target="_blank">www.max-centre.eu/quantum-espresso</a>)
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></pre>
</blockquote>
<pre cols="72">--
Oleksandr Motornyi
PhD, Data Scientist
France</pre>
</div>
_______________________________________________<br>
Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/quantum-espresso" rel="noreferrer" target="_blank">www.max-centre.eu/quantum-espresso</a>)<br>
users mailing list <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>