Program PHONON v.6.5 starts on 18May2020 at 9:55:43 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 32 processors MPI processes distributed on 1 nodes K-points division: npool = 32 Fft bands division: nmany = 1 Reading xml data from directory: ./pwscf.save/ IMPORTANT: XC functional enforced from input : Exchange-correlation= PBE ( 1 4 3 4 0 0 0) Any further DFT definition will be discarded Please, verify this is what you really want G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 5713 2285 641 324157 81793 12053 Message from routine divide_et_impera: suboptimal parallelization: some nodes have no k-points Reading collected, re-writing distributed wavefunctions Dynamical matrices for ( 1, 1, 1) uniform grid of q-points ( 1 q-points): N xq(1) xq(2) xq(3) 1 0.000000000 0.000000000 0.000000000 Calculation of q = 0.0000000 0.0000000 0.0000000 Calculate electron-phonon coupling on a coarse grid bravais-lattice index = 0 lattice parameter (alat) = 10.1173 a.u. unit-cell volume = 1035.6170 (a.u.)^3 number of atoms/cell = 54 number of atomic types = 2 kinetic-energy cut-off = 70.0000 Ry charge density cut-off = 700.0000 Ry convergence threshold = 1.0E-12 beta = 0.7000 number of iterations used = 4 Exchange-correlation= PBE ( 1 4 3 4 0 0 0) celldm(1)= 10.11734 celldm(2)= 0.00000 celldm(3)= 0.00000 celldm(4)= 0.00000 celldm(5)= 0.00000 celldm(6)= 0.00000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.0000 0.0000 0.0000 ) a(2) = ( 0.0000 1.0000 0.0000 ) a(3) = ( 0.0000 0.0000 1.0000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.0000 0.0000 0.0000 ) b(2) = ( 0.0000 1.0000 0.0000 ) b(3) = ( 0.0000 0.0000 1.0000 ) Atoms inside the unit cell: Cartesian axes site n. atom mass positions (alat units) 1 Ca 40.0780 tau( 1) = ( 0.25000 0.50000 0.00000 ) 2 Ca 40.0780 tau( 2) = ( 0.75000 0.50000 0.00000 ) 3 Ca 40.0780 tau( 3) = ( 0.50000 0.00000 0.25000 ) 4 Ca 40.0780 tau( 4) = ( 0.50000 0.00000 0.75000 ) 5 Ca 40.0780 tau( 5) = ( 0.00000 0.25000 0.50000 ) 6 Ca 40.0780 tau( 6) = ( 0.00000 0.75000 0.50000 ) 7 Ca 40.0780 tau( 7) = ( 0.00000 0.00000 0.00000 ) 8 Ca 40.0780 tau( 8) = ( 0.50000 0.50000 0.50000 ) 9 H 1.0070 tau( 9) = ( 0.30667 0.84801 0.00000 ) 10 H 1.0070 tau( 10) = ( 0.00000 0.30667 0.84801 ) 11 H 1.0070 tau( 11) = ( 0.00000 0.30667 0.15199 ) 12 H 1.0070 tau( 12) = ( 0.30667 0.15199 0.00000 ) 13 H 1.0070 tau( 13) = ( 0.84801 0.00000 0.30667 ) 14 H 1.0070 tau( 14) = ( 0.15199 0.00000 0.69333 ) 15 H 1.0070 tau( 15) = ( 0.00000 0.69333 0.84801 ) 16 H 1.0070 tau( 16) = ( 0.15199 0.00000 0.30667 ) 17 H 1.0070 tau( 17) = ( 0.69333 0.84801 0.00000 ) 18 H 1.0070 tau( 18) = ( 0.69333 0.15199 0.00000 ) 19 H 1.0070 tau( 19) = ( 0.84801 0.00000 0.69333 ) 20 H 1.0070 tau( 20) = ( 0.00000 0.69333 0.15199 ) 21 H 1.0070 tau( 21) = ( 0.50000 0.65199 0.19333 ) 22 H 1.0070 tau( 22) = ( 0.50000 0.34801 0.80667 ) 23 H 1.0070 tau( 23) = ( 0.50000 0.65199 0.80667 ) 24 H 1.0070 tau( 24) = ( 0.80667 0.50000 0.34801 ) 25 H 1.0070 tau( 25) = ( 0.80667 0.50000 0.65199 ) 26 H 1.0070 tau( 26) = ( 0.50000 0.34801 0.19333 ) 27 H 1.0070 tau( 27) = ( 0.19333 0.50000 0.65199 ) 28 H 1.0070 tau( 28) = ( 0.19333 0.50000 0.34801 ) 29 H 1.0070 tau( 29) = ( 0.65199 0.19333 0.50000 ) 30 H 1.0070 tau( 30) = ( 0.34801 0.80667 0.50000 ) 31 H 1.0070 tau( 31) = ( 0.34801 0.19333 0.50000 ) 32 H 1.0070 tau( 32) = ( 0.65199 0.80667 0.50000 ) 33 H 1.0070 tau( 33) = ( 0.19721 0.19721 0.80279 ) 34 H 1.0070 tau( 34) = ( 0.80279 0.19721 0.80279 ) 35 H 1.0070 tau( 35) = ( 0.80279 0.19721 0.19721 ) 36 H 1.0070 tau( 36) = ( 0.19721 0.80279 0.19721 ) 37 H 1.0070 tau( 37) = ( 0.80279 0.80279 0.19721 ) 38 H 1.0070 tau( 38) = ( 0.19721 0.80279 0.80279 ) 39 H 1.0070 tau( 39) = ( 0.80279 0.80279 0.80279 ) 40 H 1.0070 tau( 40) = ( 0.19721 0.19721 0.19721 ) 41 H 1.0070 tau( 41) = ( 0.69721 0.69721 0.69721 ) 42 H 1.0070 tau( 42) = ( 0.30279 0.69721 0.30279 ) 43 H 1.0070 tau( 43) = ( 0.30279 0.30279 0.69721 ) 44 H 1.0070 tau( 44) = ( 0.69721 0.30279 0.30279 ) 45 H 1.0070 tau( 45) = ( 0.30279 0.69721 0.69721 ) 46 H 1.0070 tau( 46) = ( 0.30279 0.30279 0.30279 ) 47 H 1.0070 tau( 47) = ( 0.69721 0.30279 0.69721 ) 48 H 1.0070 tau( 48) = ( 0.69721 0.69721 0.30279 ) 49 H 1.0070 tau( 49) = ( 0.00000 0.50000 0.75000 ) 50 H 1.0070 tau( 50) = ( 0.75000 0.00000 0.50000 ) 51 H 1.0070 tau( 51) = ( 0.25000 0.00000 0.50000 ) 52 H 1.0070 tau( 52) = ( 0.00000 0.50000 0.25000 ) 53 H 1.0070 tau( 53) = ( 0.50000 0.75000 0.00000 ) 54 H 1.0070 tau( 54) = ( 0.50000 0.25000 0.00000 ) Computing dynamical matrix for q = ( 0.0000000 0.0000000 0.0000000 ) 49 Sym.Ops. (with q -> -q+G ) G cutoff = 1814.9768 ( 324157 G-vectors) FFT grid: ( 90, 90, 90) G cutoff = 725.9907 ( 81793 G-vectors) smooth grid: ( 54, 54, 54) number of k points= 20 Gaussian smearing, width (Ry)= 0.0200 PseudoPot. # 1 for Ca read from file: /home/mjh261/rds/rds-t2-cs084/pseudopotentials/gbrv/Ca.UPF MD5 check sum: 403a4c14b9e4d4dfdc3024c9a3812218 Pseudo is Ultrasoft + core correction, Zval = 10.0 Generated by new atomic code, or converted to UPF format Using radial grid of 845 points, 6 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 l(5) = 2 l(6) = 2 Q(r) pseudized with 8 coefficients, rinner = 1.500 1.500 1.500 1.500 1.500 PseudoPot. # 2 for H read from file: /home/mjh261/rds/rds-t2-cs084/pseudopotentials/gbrv/H.UPF MD5 check sum: 761ae9a214b05c3daf00ab9f6b793d6f Pseudo is Ultrasoft, Zval = 1.0 Generated by new atomic code, or converted to UPF format Using radial grid of 615 points, 2 beta functions with: l(1) = 0 l(2) = 0 Q(r) pseudized with 8 coefficients, rinner = 0.700 Mode symmetry, O_h (m-3m) point group: Atomic displacements: There are 66 irreducible representations Representation 1 1 modes -A_1g G_1 G_1+ To be done Representation 2 1 modes -A_1g G_1 G_1+ To be done Representation 3 1 modes -A_1g G_1 G_1+ To be done Representation 4 1 modes -A_2g G_2 G_2+ To be done Representation 5 1 modes -A_2g G_2 G_2+ To be done Representation 6 1 modes -A_2g G_2 G_2+ To be done Representation 7 1 modes -A_2g G_2 G_2+ To be done Representation 8 1 modes -A_2g G_2 G_2+ To be done Representation 9 2 modes -E_g G_12 G_3+ To be done Representation 10 2 modes -E_g G_12 G_3+ To be done Representation 11 2 modes -E_g G_12 G_3+ To be done Representation 12 2 modes -E_g G_12 G_3+ To be done Representation 13 2 modes -E_g G_12 G_3+ To be done Representation 14 2 modes -E_g G_12 G_3+ To be done Representation 15 2 modes -E_g G_12 G_3+ To be done Representation 16 2 modes -E_g G_12 G_3+ To be done Representation 17 3 modes -T_1g G_15' G_4+ To be done Representation 18 3 modes -T_1g G_15' G_4+ To be done Representation 19 3 modes -T_1g G_15' G_4+ To be done Representation 20 3 modes -T_1g G_15' G_4+ To be done Representation 21 3 modes -T_1g G_15' G_4+ To be done Representation 22 3 modes -T_1g G_15' G_4+ To be done Representation 23 3 modes -T_1g G_15' G_4+ To be done Representation 24 3 modes -T_1g G_15' G_4+ To be done Representation 25 3 modes -T_1g G_15' G_4+ To be done Representation 26 3 modes -T_2g G_25' G_5+ To be done Representation 27 3 modes -T_2g G_25' G_5+ To be done Representation 28 3 modes -T_2g G_25' G_5+ To be done Representation 29 3 modes -T_2g G_25' G_5+ To be done Representation 30 3 modes -T_2g G_25' G_5+ To be done Representation 31 3 modes -T_2g G_25' G_5+ To be done Representation 32 3 modes -T_2g G_25' G_5+ To be done Representation 33 3 modes -T_2g G_25' G_5+ To be done Representation 34 3 modes -T_2g G_25' G_5+ To be done Representation 35 1 modes -A_1u G_1' G_1- To be done Representation 36 1 modes -A_1u G_1' G_1- To be done Representation 37 1 modes -A_2u G_2' G_2- To be done Representation 38 1 modes -A_2u G_2' G_2- To be done Representation 39 2 modes -E_u G_12' G_3- To be done Representation 40 2 modes -E_u G_12' G_3- To be done Representation 41 2 modes -E_u G_12' G_3- To be done Representation 42 2 modes -E_u G_12' G_3- To be done Representation 43 3 modes -T_1u G_15 G_4- To be done Representation 44 3 modes -T_1u G_15 G_4- To be done Representation 45 3 modes -T_1u G_15 G_4- To be done Representation 46 3 modes -T_1u G_15 G_4- To be done Representation 47 3 modes -T_1u G_15 G_4- To be done Representation 48 3 modes -T_1u G_15 G_4- To be done Representation 49 3 modes -T_1u G_15 G_4- To be done Representation 50 3 modes -T_1u G_15 G_4- To be done Representation 51 3 modes -T_1u G_15 G_4- To be done Representation 52 3 modes -T_1u G_15 G_4- To be done Representation 53 3 modes -T_1u G_15 G_4- To be done Representation 54 3 modes -T_1u G_15 G_4- To be done Representation 55 3 modes -T_1u G_15 G_4- To be done Representation 56 3 modes -T_2u G_25 G_5- To be done Representation 57 3 modes -T_2u G_25 G_5- To be done Representation 58 3 modes -T_2u G_25 G_5- To be done Representation 59 3 modes -T_2u G_25 G_5- To be done Representation 60 3 modes -T_2u G_25 G_5- To be done Representation 61 3 modes -T_2u G_25 G_5- To be done Representation 62 3 modes -T_2u G_25 G_5- To be done Representation 63 3 modes -T_2u G_25 G_5- To be done Representation 64 3 modes -T_2u G_25 G_5- To be done Representation 65 3 modes -T_2u G_25 G_5- To be done Representation 66 3 modes -T_2u G_25 G_5- To be done Alpha used in Ewald sum = 2.8000 PHONON : 1h28m CPU 1h29m WALL Representation # 1 mode # 1 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = 3.4452E-03 -3.1019E-25 iter # 1 total cpu time : 5375.7 secs av.it.: 3.0 thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 3.626E-08 Pert. # 1: Fermi energy shift (Ry) = 5.6639E-04 -1.5510E-25 iter # 2 total cpu time : 5401.9 secs av.it.: 11.2 thresh= 1.904E-05 alpha_mix = 0.700 |ddv_scf|^2 = 3.331E-08 Pert. # 1: Fermi energy shift (Ry) = -1.2254E-03 -2.0680E-25 iter # 3 total cpu time : 5428.0 secs av.it.: 10.6 thresh= 1.825E-05 alpha_mix = 0.700 |ddv_scf|^2 = 6.741E-11 Pert. # 1: Fermi energy shift (Ry) = -4.3708E-04 -2.0680E-25 iter # 4 total cpu time : 5454.2 secs av.it.: 11.2 thresh= 8.210E-07 alpha_mix = 0.700 |ddv_scf|^2 = 5.426E-13 End of self-consistent calculation Convergence has been achieved Representation # 2 mode # 2 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = 4.1526E-03 -1.4217E-25 iter # 1 total cpu time : 5515.6 secs av.it.: 3.0 thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 5.325E-09 Pert. # 1: Fermi energy shift (Ry) = 3.7492E-03 -1.1374E-24 iter # 2 total cpu time : 5542.1 secs av.it.: 11.2 thresh= 7.297E-06 alpha_mix = 0.700 |ddv_scf|^2 = 3.436E-09 Pert. # 1: Fermi energy shift (Ry) = 5.2085E-03 -1.1374E-24 iter # 3 total cpu time : 5568.2 secs av.it.: 10.6 thresh= 5.862E-06 alpha_mix = 0.700 |ddv_scf|^2 = 7.245E-11 Pert. # 1: Fermi energy shift (Ry) = 5.0711E-03 -1.1374E-24 iter # 4 total cpu time : 5594.5 secs av.it.: 11.1 thresh= 8.512E-07 alpha_mix = 0.700 |ddv_scf|^2 = 1.671E-12 Pert. # 1: Fermi energy shift (Ry) = 4.8977E-03 -1.1374E-24 iter # 5 total cpu time : 5620.9 secs av.it.: 11.4 thresh= 1.293E-07 alpha_mix = 0.700 |ddv_scf|^2 = 6.828E-14 End of self-consistent calculation Convergence has been achieved Representation # 3 mode # 3 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = 6.8198E-03 1.5510E-25 iter # 1 total cpu time : 5666.6 secs av.it.: 3.0 thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.570E-08 Pert. # 1: Fermi energy shift (Ry) = 1.2155E-02 1.0340E-25 iter # 2 total cpu time : 5692.9 secs av.it.: 11.2 thresh= 1.253E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.411E-08 Pert. # 1: Fermi energy shift (Ry) = 9.3713E-03 1.0340E-25 iter # 3 total cpu time : 5719.0 secs av.it.: 10.6 thresh= 1.188E-05 alpha_mix = 0.700 |ddv_scf|^2 = 4.498E-11 Pert. # 1: Fermi energy shift (Ry) = 8.9978E-03 1.0340E-25 iter # 4 total cpu time : 5745.2 secs av.it.: 11.2 thresh= 6.707E-07 alpha_mix = 0.700 |ddv_scf|^2 = 1.273E-12 Pert. # 1: Fermi energy shift (Ry) = 9.0474E-03 1.0340E-25 iter # 5 total cpu time : 5771.7 secs av.it.: 11.4 thresh= 1.128E-07 alpha_mix = 0.700 |ddv_scf|^2 = 8.336E-14 End of self-consistent calculation Convergence has been achieved Representation # 4 mode # 4 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = 2.5298E-19 -1.4694E-39 iter # 1 total cpu time : 5816.1 secs av.it.: 5.8 thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 3.077E-06 Pert. # 1: Fermi energy shift (Ry) = 0.0000E+00 1.8367E-40 iter # 2 total cpu time : 5842.8 secs av.it.: 11.2 thresh= 1.754E-04 alpha_mix = 0.700 |ddv_scf|^2 = 1.255E-05 Pert. # 1: Fermi energy shift (Ry) = 3.6140E-20 -4.8979E-40 iter # 3 total cpu time : 5868.5 secs av.it.: 9.8 thresh= 3.543E-04 alpha_mix = 0.700 |ddv_scf|^2 = 4.614E-08 Pert. # 1: Fermi energy shift (Ry) = 4.5175E-21 1.5306E-41 iter # 4 total cpu time : 5895.1 secs av.it.: 11.0 thresh= 2.148E-05 alpha_mix = 0.700 |ddv_scf|^2 = 1.560E-10 Pert. # 1: Fermi energy shift (Ry) = -1.5811E-20 -2.3915E-43 iter # 5 total cpu time : 5921.4 secs av.it.: 11.4 thresh= 1.249E-06 alpha_mix = 0.700 |ddv_scf|^2 = 1.238E-11 Pert. # 1: Fermi energy shift (Ry) = -2.2588E-21 5.7397E-42 iter # 6 total cpu time : 5947.5 secs av.it.: 10.7 thresh= 3.519E-07 alpha_mix = 0.700 |ddv_scf|^2 = 7.046E-14 End of self-consistent calculation Convergence has been achieved Representation # 5 mode # 5 Self-consistent Calculation Pert. # 1: Fermi energy shift (Ry) = 9.0350E-20 -5.5101E-40 iter # 1 total cpu time : 5990.6 secs av.it.: 3.0 thresh= 1.000E-02 alpha_mix = 0.700 |ddv_scf|^2 = 1.085E-07 Pert. # 1: Fermi energy shift (Ry) = -2.3491E-19 -1.9898E-40 iter # 2 total cpu time : 6016.9 secs av.it.: 11.1 thresh= 3.294E-05 alpha_mix = 0.700 |ddv_scf|^2 = 4.906E-07 Pert. # 1: Fermi energy shift (Ry) = 1.1746E-19 -1.1020E-39 iter # 3 total cpu time : 6042.6 secs av.it.: 9.7 thresh= 7.004E-05 alpha_mix = 0.700 |ddv_scf|^2 = 8.164E-11 Pert. # 1: Fermi energy shift (Ry) = 0.0000E+00 -2.3915E-42 iter # 4 total cpu time : 6068.9 secs av.it.: 11.2 thresh= 9.035E-07 alpha_mix = 0.700 |ddv_scf|^2 = 6.719E-12 Pert. # 1: Fermi energy shift (Ry) = 0.0000E+00 3.8265E-42 iter # 5 total cpu time : 6095.0 secs av.it.: 10.9 thresh= 2.592E-07 alpha_mix = 0.700 |ddv_scf|^2 = 7.669E-14