<div dir="ltr"><div class="gmail_default" style="font-size:large;color:#073763"><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">Dear all,</font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">I am interested in the paper: </font><span style="font-family:"Helvetica Neue",Helvetica,Roboto,Arial,sans-serif;font-size:14px"><a href="https://doi.org/10.1103/PhysRevB.97.054416">https://doi.org/10.1103/PhysRevB.97.054416</a></span></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">I would like to follow its results. At the first step, I need to relax the crystal structure under the external saw-like electrical potential by QE package. According to the paper, the bond angles of Cr-I-Cr in the top and bottom plane of the relaxed structure, referred by theta1 and theta2 have a difference about 2 degrees at 1 eV/nm. But my DFT calculations show that the electric field does not change the structure geometry! </font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">Here you can find my input file? If I have forgotten something, please let me know. </font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000"><br></font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">Best regards,</font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">Sahar Izadi</font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">Postdoc researcher at IPM</font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">----------------------------------------</font></div><div class="gmail_default" style="color:rgb(34,34,34);font-size:small"><font color="#000000">&CONTROL  <br>  calculation='vc-relax',<br>  outdir='./',<br>  prefix='relE',<br>  pseudo_dir='./',<br>  tefield = .true.,<br>  dipfield = .true.,<br>  wf_collect=.true.,<br>  tprnfor=.true.,<br>  tstress=.true.,<br>  etot_conv_thr=1d-6,<br>  forc_conv_thr=1d-4,<br>/<br>&SYSTEM<br>  ibrav=4,<br>  celldm(1)=13.3180905273d0, celldm(3)=5.675666855383d0<br>  nat=8,<br>  ntyp=2,<br>  ecutwfc=80,<br>  occupations='smearing',<br>  smearing='mv',<br>  degauss=0.01d0,  <br>  nspin   = 2<br>  starting_magnetization(1)=1, <br>  edir=  3<br>  eamp= 0.006 ! corresponding to 3.09 eV/nm<br>  emaxpos=0.95d0, <br>  eopreg=0.05d0,  <br>/<br><br>&ELECTRONS<br>  conv_thr=1d-10,<br>  electron_maxstep=500,<br>  mixing_beta=0.7d0,<br>/<br><br>&IONS<br>  ion_dynamics='bfgs',<br>  upscale=220,<br>/<br><br>&CELL<br>  cell_dynamics='bfgs',<br>  press=0.0d0,<br>  press_conv_thr=0.05d0,<br>/<br><br><br>ATOMIC_SPECIES<br>  Cr 51.996100d0  Cr.pbe-n-nc.UPF<br>  I  126.904000d0 I.pbe-n-nc.UPF<br><br>ATOMIC_POSITIONS {crystal}<br> <br>  Cr   0.7437072547d0   0.1666691480d0   0.4999996536d0 <br>  Cr   0.4103708485d0   0.5000018526d0   0.4999996885d0 <br>   I   0.0770490950d0   0.4748440602d0   0.4603865190d0  <br>   I   0.0770444830d0   0.1918398526d0   0.5396142354d0  <br>   I   0.4355397493d0   0.1918537239d0   0.4603871637d0  <br>   I   0.4355307864d0   0.8333206653d0   0.5396123221d0  <br>   I   0.7185253232d0   0.4748317887d0   0.5396124224d0  <br>   I   0.7185332444d0   0.8333308520d0   0.4603857646d0  <br><br>K_POINTS {automatic}<br>  8 8 1 0 0 0</font></div></div></div>