<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"><html><head><link type="text/css" rel="stylesheet" href="/gw_resource/css/namo_basic.css"><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body class="" style="font-family: 굴림; font-size: 10pt;"><style type="text/css" id="NamoSE__GeneralStyle"> body{font-family :돋움; color : #000000; font-size : 10pt; margin : 7px 0 0 7px;} p,li{line-height:1.2; word-wrap: break-word; margin-top:0; margin-bottom:0;} body{overflow:auto;}.NamoSE_layoutlock_show { word-break: break-all;}</style><p>Hello,</p><p>As indicated in the literature (for example <a href="https://www.sciencedirect.com/science/article/pii/S0927025616300672">https://www.sciencedirect.com/science/article/pii/S0927025616300672</a>) people apply a Hubbard potential around 8 or 9 eV to correct the band gap of pure SnS2 from around 1.3 eV with only GGA to around 2 eV after applying U.</p><p>Knowing that Sn d orbital is closed shell orbital (d10), I applied U of 9 eV but band gap is not changing unlike what is reported in the literature, is it because it is closed shell, if so why it worked for other people ?</p><p>I'm attaching the result of the calculation with and without U, and the density of states for both which look the same.<br></p><p>Best<br></p><img src="http://ptmsg.skku.edu/emate_app/ematemdn.nsf/mdnform?OpenForm&sender=bouzid@skku.edu&receiver=users@lists.quantum-espresso.org&key=E455F3F7280BDC0A492584A6004F55D7" width=0 height=0 border=0></body></html>