<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body dir="auto">
<div><br>
</div>
<div><br>
</div>
U can help, but it’s not really the answer - see some of the papers here, and search the literature:
<div><a href="http://theossrv1.epfl.ch/Main/OxidationStates">http://theossrv1.epfl.ch/Main/OxidationStates</a><br>
<br>
<div id="AppleMailSignature" dir="ltr">Sent from a tiny keyboard... Contact info:
<div>
<div><a href="http://theossrv1.epfl.ch/Main/Contact">http://theossrv1.epfl.ch/Main/Contact</a></div>
</div>
</div>
<div dir="ltr"><br>
On 27 Jun 2019, at 03:51, Eric Glen Suter <<a href="mailto:esuter@uga.edu">esuter@uga.edu</a>> wrote:<br>
<br>
</div>
<blockquote type="cite">
<div dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p style="margin-top:0;margin-bottom:0">Hello all,</p>
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<p style="margin-top:0;margin-bottom:0">I'm trying to simulate transition metal dopants in particular charge states. <span style="font-size: 12pt;">I'm more or less familiar with the "tot_charge" tag and how it functions. For these transition metals, it seems
 the extra charge I introduce doesn't want to localize on my dopants. I've been looking into using the Hubbard U as a way to coerce this extra electron (or hole in some cases</span><span style="font-size: 12pt;">) to localize on my dopant. I've read up a bit
 on the literature about these types of corrections, but I'd like to know:</span></p>
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<p style="margin-top:0;margin-bottom:0">1) Am I on the right track with this line of reasoning? I also take notice of the "starting_charge" tag for pw.x. I haven't tried it out, but is that a viable way of trying to coax the extra charge to stay on the dopant?</p>
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<p style="margin-top:0;margin-bottom:0">2) If Hubbard U really is the way to go, is there a way of tuning the U parameter that doesn't involve supercells? I'm already working with a pretty large cell and I don't have a ton of computational power at my disposal. </p>
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<p style="margin-top:0;margin-bottom:0">I understand this is no trivial task, but if anyone has any insight on how to model a dopant in a particular charge state, I'd be grateful for a nudge in the right direction.</p>
<p style="margin-top:0;margin-bottom:0"><br>
</p>
<p style="margin-top:0;margin-bottom:0">Thank you in advance for any help you might have to offer,</p>
<p style="margin-top:0;margin-bottom:0">Eric Suter</p>
<p style="margin-top:0;margin-bottom:0">Dept. of Physics and Astronomy</p>
<p style="margin-top:0;margin-bottom:0">University of Georgia</p>
</div>
</div>
</blockquote>
<blockquote type="cite">
<div dir="ltr"><span>_______________________________________________</span><br>
<span>Quantum ESPRESSO is supported by MaX (<a href="http://www.max-centre.eu/quantum-espresso">www.max-centre.eu/quantum-espresso</a>)</span><br>
<span>users mailing list <a href="mailto:users@lists.quantum-espresso.org">users@lists.quantum-espresso.org</a></span><br>
<span><a href="https://lists.quantum-espresso.org/mailman/listinfo/users">https://lists.quantum-espresso.org/mailman/listinfo/users</a></span></div>
</blockquote>
</div>
</body>
</html>