<div dir="ltr">Dear users, <br>
</div><div dir="ltr"><br>
</div><div dir="ltr">Recently I'm trying to do the so called mapping of DFT energies to the Heisenberg spin hamiltonian in order to calculate spin coupling constants J(i, j). To do so, I need to calculate Total energy for system with specific various spin configurations, that I should force my system to be in. Then the procedure is to solve equations obtained in that way in respect to J(i, j). In those eq. spin i or j can have only 2 values: up (1) and down (-1). <br>
</div><div dir="ltr">The main question is how to force specific spin configurations? For simplicity let consider BCC iron. <br>
</div><div dir="ltr">I define in input supercell for BCC iron with different species (fe1, fe2 etc and nspin=2) so any site is defined separately and each different site can have diffetent spin. Then, I define starting_magnetisation for each site for eg. starting_magnetisation(1)=1, starting_magnetisation(2)=-1 etc, for lets say antiferromagnetic configuration. The problem is, that during SCF cycles I can see spin flips, sometimes spin magnitude is going close to 0 (I conidered not only BCC iron) ruining my starting configuration, so my system evolves (as it is supposed to) searching for the lowest energy state, that is not always my enforced state. <br>
</div><div dir="ltr"><br>
</div><div dir="ltr"> Therefore, as I know that this approach is quite bad, could you please suggest the correct way to do this mapping? Searching for local energy minima in metastable spin configurations seems to be some way, but I hope that there is another, quicker/better/correct way; how to "lock" my spin configuration? <br>
</div><div dir="ltr"><br>
</div><div dir="ltr">Also, is in case of obtaining J(i, j) noncollinear spin calculation a neccesity? My another doubt is that in case of low spin moment for example = - 0.2 uB can I treat it like spin down configuration in model Hamiltonian, or do I need exact -1 uB, and what in case of magnitude greater/lower than 1/-1?. <br>
</div><div dir="ltr"><br>
</div><div dir="ltr">As you can see by my questions I am really confused and I need some basic understanding... <br>
</div><div dir="ltr"> <br>
</div><div dir="ltr">Hope I didn't offended any one by my very basic questions, but despite my efforts, I did not find an article describing the technicalities of this procedure, only some general considerations.<br>
</div><div dir="ltr"><br>
</div><div dir="ltr">Regards, <br>
</div><div dir="ltr"><br>
</div><div dir="ltr">Konrad Gruszka</div>