<div dir="ltr">With regard<div>Dear Kevin</div><div>1) Actually, my reference is computational material science 44(2008) 690-694 (although they reported delta(E)= -0.456 eV/atom that i don't know what it is. because i said that it must be 1.6 eV according to <a href="https://doi.org/10.1080/09506608.2018.1560984">https://doi.org/10.1080/09506608.2018.1560984</a>). i also used spin-polarized (0.2 for Fe) but the same result was obtained (not better than 2.2 eV). I also used constant volume (by using relax calculation not vc_relax), but i had the same results.</div><div>2) thanks for the proposed links, but in that reference they offered two non-consistent pps (C.pbe-n-kjpaw_psl.1.0.0.UPF and Fe.pbe-spn-kjpaw_psl.0.2.1.UPF) that i cannot use for Fe3C. i used these pp:</div><div>C.pbe-n-rrkjus_psl.1.0.0.UPF<br></div><div>Fe.pbe-spn-rrkjus_psl.1.0.0.UPF<br></div><div>I am really confused about how can i calculate this rather simple parameter. i should mention that i calculate the Fe vacancy with:</div><div>E(Fe-vacancy)=E(perfect Fe3C)- E(Fe3C with lack of one Fe atom)- E(single Fe)</div><div>3) thanks very much for the reference Rev. Mod. Phys. 86, 253 (2014).</div><div><br></div><div><div>regards</div><div><br></div><div><div style="color:rgb(80,0,80)">Seyed Mehrdad Zamzamian</div><div style="color:rgb(80,0,80)">Sharif University of Technology, Tehran, Iran</div><div style="color:rgb(80,0,80)">Energy engineering department</div><div style="color:rgb(80,0,80)">E-mail: <a href="mailto:mehrdad.zamzamian@gmail.com" target="_blank">mehrdad.zamzamian@gmail.com</a></div></div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, May 31, 2019 at 4:24 AM Kevin May <<a href="mailto:kmay@mit.edu">kmay@mit.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Hi Mehrdad,</div><br><div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">Just a few more thoughts:</span></div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span></span><div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></span></div><div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">1)</span><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"> Which reference state are you usin</span>g<span class="gmail_default" style="font-family:arial,helvetica,sans-serif"> for Fe</span>? Jiang et al. use <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">ferromagnetic </span>BCC Fe <span class="gmail_default" style="font-family:arial,helvetica,sans-serif">in </span>Acta Materialia <span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span>56<span class="gmail_default" style="font-family:arial,helvetica,sans-serif">, </span>3236–3244<span class="gmail_default" style="font-family:arial,helvetica,sans-serif">
<span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span> (2008)</span>.<span class="gmail_default" style="font-family:arial,helvetica,sans-serif"></span><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"> This paper uses constant volume rather than constant (zero) pressure calculations. I would definitely do spin polarized calculations. You mentioned your current pseudopotentials are not recommended for spin polarized calculations--I would use different ones.<br></span><div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></span></div>
</div><div><span class="gmail_default" style="font-family:arial,helvetica,sans-serif">2) I'm not sure which pseudopotentials you are using exactly, but I have had good results using those in the Standard Solid State Pseudopotentials (SSSP) tables, which comes from very useful work of a team at EPFL (</span><span class="gmail_default" style="font-family:arial,helvetica,sans-serif"><a href="https://www.materialscloud.org/discover/sssp/" target="_blank">https://www.materialscloud.org/discover/sssp/</a>). In your case, this would be from PSLibrary 0.3.1 PAW for Fe and PSLibrary 1.0.0 PAW for C. Note the recommended ecutrho is 12*ecutwfc for Fe. The recommended cutoff there is 90 Ry but you might get away with something smaller if you test it yourself.<br></span></div><br><div>3) A good reference for defect calculations is<span class="gmail_default" style="font-family:arial,helvetica,sans-serif"> </span>Rev. Mod. Phys. 86, 253 (2014).</div><div><br></div><div><div style="font-family:arial,helvetica,sans-serif" class="gmail_default">Best,<br></div></div><div><br></div>Kevin May, PhD<br>Postdoctoral Associate<br>Department of Materials Science and Engineering<br>Massachusetts Institute of Technology<div><span style="font-family:arial,helvetica,sans-serif"></span><br><span style="font-family:arial,helvetica,sans-serif"></span></div><div><div dir="ltr" class="gmail-m_2009233844108517203m_6412774953329031936m_414228326078484161gmail_signature"><div dir="ltr"><div><div dir="ltr"><span style="font-family:arial,helvetica,sans-serif"></span><br><div><span style="font-family:arial,helvetica,sans-serif"><font size="2"><font size="1"><span style="color:rgb(102,102,102)"></span></font></font></span><span style="font-family:arial,helvetica,sans-serif"><font size="2"><font size="1"><span style="color:rgb(102,102,102)"></span></font></font></span></div></div></div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, May 30, 2019 at 3:59 AM mehrdad zamzamian <<a href="mailto:mehrdad.zamzamian@gmail.com" target="_blank">mehrdad.zamzamian@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Thanks for your attention to my question<div>Actually, i defined a supercell (2*2*2), used USPP-PBE.I adjusted the cutoff according to what was proposed for it (~70) and for ecut_rho (~400). for scf convergence, i set conv=1e-6, ant at here, i set mixing beta~0.04 (it helped to reach to convergence fast). and also i set press=0 and its threshold to 0.5. I want to calculate the vacancy (lack of Fe) energy. its value must be 1.6 eV but i never give the better than 2.2 eV (The ridiculous thing is that with molecular dynamics I got a very precise amount of 1.6! that of course, its interatomic is more precise than my calculation!). according to my PP in this calculation, it is suggested to use non-polarized spin. i really do not know what parameter can i changed to achieve 1.6 eV.</div><div>In addition, your food for the brain is some hard to be digested!</div><div><br></div><div><div>Regards</div><div><br></div><div><div style="color:rgb(80,0,80)">Seyed Mehrdad Zamzamian</div><div style="color:rgb(80,0,80)">Sharif University of Technology, Tehran, Iran</div><div style="color:rgb(80,0,80)">Energy engineering department</div><div style="color:rgb(80,0,80)">E-mail: <a href="mailto:mehrdad.zamzamian@gmail.com" target="_blank">mehrdad.zamzamian@gmail.com</a></div></div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, May 29, 2019 at 9:48 PM Kevin May <<a href="mailto:kmay@mit.edu" target="_blank">kmay@mit.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Hi Mehrdad,</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">If you have a large energy difference between the end of the vc-relax algorithm and the final scf step, you may be using a fairly low plane wave cutoff energy for your system, though that may be fine depending on what quantities you are looking at. An important question here is: how are you choosing your convergence criteria? In my experience stresses (vc-relax) require a higher cutoff compared to total energy or forces (just ionic relaxation).</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">This all depends of course on what you are trying to get out of your calculation. In my case I was comparing different magnetic ground states that could be very close in energy, where very small changes in geometry can make a difference. For my specific systems I would converge plane wave cutoff, k-points and convergence threshold with respect to unit cell stress using a reference calculation with very high cutoff, low threshold (10^-9 Ry), and dense k-point mesh.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Just some food for thought. I've definitely seen papers in the literature where they claim state A has lower energy than state B. I've reproduced such results using the somewhat lax cutoffs reported, and then found when you actually do CONVERGED calculations, state B is actually lower in energy (whoops!). Convergence is important.</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Best,</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif"><br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Kevin May, PhD<br></div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Postdoctoral Associate</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Department of Materials Science and Engineering</div><div class="gmail_default" style="font-family:arial,helvetica,sans-serif">Massachusetts Institute of Technology</div><div><div dir="ltr" class="gmail-m_2009233844108517203gmail-m_6412774953329031936gmail-m_414228326078484161gmail-m_6534786325105608314gmail-m_569288391606057299gmail-m_9199630020210583138gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-family:arial,helvetica,sans-serif"><font size="2"><font size="1"><span style="color:rgb(102,102,102)"></span></font></font></span><span style="font-family:arial,helvetica,sans-serif"><font size="2"><font size="1"><span style="color:rgb(102,102,102)"></span></font></font></span></div></div></div></div></div></div></div>
</blockquote></div>
</blockquote></div>
</blockquote></div>