<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix">Dear Robert Wexler,</div>
    <div class="moz-cite-prefix"><br>
    </div>
    <div class="moz-cite-prefix">there are some additional force terms
      when using Vanderbilt Ultrasoft pseudopotentials in HFX
      calculations. These are not implemented, and using a more recent
      QE version will actually stop, because these force terms are
      missing.</div>
    <div class="moz-cite-prefix"><br>
    </div>
    <div class="moz-cite-prefix">Regards,</div>
    <div class="moz-cite-prefix"><br>
    </div>
    <div class="moz-cite-prefix">Tobias Klöffel <br>
    </div>
    <div class="moz-cite-prefix"><br>
    </div>
    <div class="moz-cite-prefix">On 5/13/19 5:33 PM, Robert Wexler
      wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAJCe4LudFJD57-Q6W0S3nX3t43CZB7EA-hp9M0zNAm1awEgJmw@mail.gmail.com">
      <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
      <div dir="ltr">
        <div dir="ltr">
          <div>Dear QE users,</div>
          <div><br>
          </div>
          <div>I obtained some perplexing results using the HSE XC
            functional that I would like to share with you.</div>
          <div><br>
          </div>
          <div>I calculated the ground state potential energy surfaces
            of H2 and O2 as a function of bond length strain (i.e. %
            different from some arbitrary starting bond length). The
            results are attached in this email as
            "h2-compare-force-energy.pdf" and
            "o2-compare-force-energy.pdf", respectively. The right panel
            for H2 and O2 shows the total energy as a function of bond
            length strain. As you can see, a slight contraction of the
            original bond length is preferred. If you look at the left
            panel, however, the total force is minimized at positive
            strains of greater magnitude. The minimum force and total
            energy should occur at the same bond length strain, which
            could present some problems for geometry optimization. I
            have attached inputs and outputs for each calculation in
            .tar.gz files ("h2-qe-in-out.tar.gz" and
            "o2-qe-in-out.tar.gz").</div>
          <div><br>
          </div>
          <div>I took this one step further and tried to relax a water
            molecule using HSE and found that the relaxation does not
            converge. This can be seen in "h2o-hse-relax.pdf". As the
            BFGS proceeds, it cannot converge because one configuration
            decreases the total energy (steps 1, 4-12, 15-16) and
            another decreases the total force (steps 2-3, 13-14).</div>
          <div><br>
          </div>
          <div>Here is a quick summary of my computational resource and
            QE settings:</div>
          <div>- Cori, NERSC, KNL</div>
          <div>- QE 6.3</div>
          <div>- GBRV PSPs</div>
          <div>- SCF calculation</div>
          <div>- 35/350 Ry cutoffs</div>
          <div>- LSDA for O2 (I get the correct total/absolute spin
            magnetization of the O2 molecule)</div>
          <div>- HSE, 1x1x1 q-grid</div>
          <div>- Assume isolated, "mt"</div>
          <div>- Gamma point</div>
          <div>- More details can be found in the inputs and outputs
            I've supplied</div>
          <div><br>
          </div>
          <div>Thank you in advance for any help you can provide.</div>
          <div><br>
          </div>
          <div>Best,</div>
          <div>Rob</div>
          <div>
            <div dir="ltr" class="gmail_signature">
              <div dir="ltr">
                <div>
                  <div dir="ltr">
                    <div dir="ltr">
                      <div><span style="font-size:12.8px">---------------------------------------------</span><br>
                      </div>
                      <div>Robert B. Wexler, PhD</div>
                      <div>University of Pennsylvania, 2019</div>
                      <div><a href="mailto:rwexler@sas.upenn.edu"
                          target="_blank" moz-do-not-send="true">rwexler@sas.upenn.edu</a></div>
                      <div>(215) 801-8741</div>
                      <div>---------------------------------------------<br>
                        <br>
                      </div>
                    </div>
                  </div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <pre class="moz-quote-pre" wrap="">_______________________________________________
Quantum Espresso is supported by MaX (<a class="moz-txt-link-abbreviated" href="http://www.max-centre.eu/quantum-espresso">www.max-centre.eu/quantum-espresso</a>)
users mailing list <a class="moz-txt-link-abbreviated" href="mailto:users@lists.quantum-espresso.org">users@lists.quantum-espresso.org</a>
<a class="moz-txt-link-freetext" href="https://lists.quantum-espresso.org/mailman/listinfo/users">https://lists.quantum-espresso.org/mailman/listinfo/users</a></pre>
    </blockquote>
    <p><br>
    </p>
    <pre class="moz-signature" cols="72">-- 
M.Sc. Tobias Klöffel
=======================================================
Interdisciplinary Center for Molecular Materials (ICMM)
and Computer-Chemistry-Center (CCC)
Department Chemie und Pharmazie
Friedrich-Alexander-Universität Erlangen-Nürnberg
Nägelsbachstr. 25
D-91052 Erlangen, Germany

Room: 2.305
Phone: +49 (0) 9131 / 85 - 20423
Fax: +49 (0) 9131 / 85 - 26565

=======================================================

E-mail: <a class="moz-txt-link-abbreviated" href="mailto:tobias.kloeffel@fau.de">tobias.kloeffel@fau.de</a>
</pre>
  </body>
</html>