<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body bgcolor="#FFFFFF" text="#000000">
Dear Julien,<br>
<br>
I can't give any valuable input for your question regarding the
parallelization, but I think your<br>
input is wrong. Using assume_isolated needs the system to be
centered around z=0.<br>
<br>
Regards<br>
<br>
Thomas<br>
<br>
<div class="moz-cite-prefix">On 4/10/19 11:36 AM, Julien Barbaud
wrote:<br>
</div>
<blockquote type="cite"
cite="mid:e175f29f-6197-c63d-4dfa-43df5157828d@sjtu.edu.cn">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<p class="MsoNormal">I am starting to use a hpc cluster of my
university, but I am very green on parallel computation.</p>
<p class="MsoNormal">I have made a first test (test #1) on a very
small-scale simulation (relaxation of a GO sheet with 19 atoms,
with respect to the gamma point). The calculation took 3m20s to
run on 1 proc on my personal computer. On the cluster with 4
proc and default parallel options, it took 1m5s, and on 8 proc
it took 44s. This seems like a reasonable behavior, and at least
shows that raising the number of procs does reduce computation
time in this case (with obvious limitations if too many procs
for the job).</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">However I tried with another test, a bit
bigger (test #2). This example is a scf calculation with 120
atoms (still with respect to the gamma point). In this case, the
parallelization brings absolutely no improvement. In fact,
although the <i>outfile</i> confirms that the code is running
on N procs, it has similar performances as if it was running on
1 proc (sometimes even worse actually, but probably not in a
significant manner, as the times are fluctuating a bit from 1
run to another)</p>
<p class="MsoNormal">I tried to run this same input file on my
personal computer both on 1 and 2 cores. Turns out that it takes
10376s to run 10 iterations on 1 core, while it takes 6777s on
two cores, so it seems that the parallelization is doing ok on
my computer.</p>
<p class="MsoNormal">I have tried to run with different number of
cores on the hpc, and different parallelization options (like
for instance –nb 4), but nothing seems to improve the time</p>
<p class="MsoNormal"> <br>
</p>
<p class="MsoNormal">Basically, I am stuck with those 2 seemingly
conflicting facts:</p>
<ul>
<li><span
style="font-family:Symbol;mso-fareast-font-family:Symbol;mso-bidi-font-family:Symbol"><span
style="mso-list:Ignore"><span style="font:7.0pt
"Times New Roman""></span></span></span>Parallelization
seems to have no particular problem on the hpc cluster because
test #1 gives good results</li>
<li>Parallelization seems to have no particular problem with the
particular input file #2 because it seems to scale reasonably
with proc number on my individual computer</li>
</ul>
<p> </p>
<p class="MsoNormal">However, combining both and running this file
in parallel on the hpc cluster ends up not working correctly…</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">I included below the input file and output
file of test #2. I also included as well as the slurm script
that I use to submit the calculation to the job manager, in case
it helps (test2.scf.slurm.txt)</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Any suggestion on what is going wrong would
be very welcome.</p>
<p> Julien</p>
<p><br>
</p>
<p><font size="+2"><b>----------------------------------</b><b>test2.in</b><b>---------------------------------------</b></font></p>
<p><b><br>
</b></p>
<p>&CONTROL<br>
title = '# Quantum Espresso PWSCF output snapshot # 0'<br>
pseudo_dir =
'/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/' ,<br>
prefix='bonding_scf'<br>
calculation = 'scf'<br>
outdir='./outslurm'<br>
/<br>
<br>
&SYSTEM<br>
nat= 120<br>
ntyp= 7<br>
ibrav= 0<br>
ecutwfc= 50, ecutrho=400,<br>
occupations='smearing', smearing='mv', degauss=1.0d-3<br>
assume_isolated='2D'<br>
/<br>
<br>
&ELECTRONS<br>
mixing_beta = 0.5<br>
conv_thr = 1.0d-7<br>
electron_maxstep=1<br>
/<br>
<br>
&IONS<br>
/<br>
<br>
&CELL<br>
/<br>
<br>
ATOMIC_SPECIES<br>
C 12.011 C.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
N 14.007 N.pbesol-n-kjpaw_psl.0.1.UPF<br>
H 1.008 H.pbesol-kjpaw_psl.0.1.UPF<br>
Pb 207.2 Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF<br>
I 126.9 I.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
O 15.999 O.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
Cl 35.450 Cl.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
<br>
<br>
CELL_PARAMETERS angstrom<br>
6.40743642 0.00000000 0.00000000<br>
0.00000000 12.53119000 0.00000000<br>
0.00000000 0.00000000 39.01263233<br>
<br>
<br>
ATOMIC_POSITIONS angstrom<br>
C 3.20373698 3.26295456 22.67510117<br>
N 4.36830205 2.66824164 22.67510117<br>
N 2.03914607 2.66824164 22.67510117<br>
H 3.20373076 4.35970913 22.67510117<br>
H 5.20200492 3.26227865 22.67510117<br>
H 4.49794030 1.65118734 22.67510117<br>
H 1.90952027 1.65118734 22.67510117<br>
H 1.20545622 3.26227865 22.67510117<br>
Pb 6.40746106 6.04808537 19.50631617<br>
I 3.20373108 6.16571088 19.50631617<br>
I 6.40746051 2.89948619 19.50631617<br>
I 0.00000101 5.76270558 22.67510117<br>
C 3.20373698 9.52854956 22.67510117<br>
N 4.36830205 8.93383664 22.67510117<br>
N 2.03914607 8.93383664 22.67510117<br>
H 3.20373076 10.62530413 22.67510117<br>
H 5.20200492 9.52787365 22.67510117<br>
H 4.49794030 7.91678234 22.67510117<br>
H 1.90952027 7.91678234 22.67510117<br>
H 1.20545622 9.52787365 22.67510117<br>
Pb 6.40746106 12.31368037 19.50631617<br>
I 3.20373108 12.43130588 19.50631617<br>
I 6.40746051 9.16508119 19.50631617<br>
I 0.00000101 12.02830057 22.67510117<br>
C 3.20373698 3.26295456 29.01264528<br>
N 4.36830205 2.66824164 29.01264528<br>
N 2.03914607 2.66824164 29.01264528<br>
H 3.20373076 4.35970913 29.01264528<br>
H 5.20200492 3.26227865 29.01264528<br>
H 4.49794030 1.65118734 29.01264528<br>
H 1.90952027 1.65118734 29.01264528<br>
H 1.20545622 3.26227865 29.01264528<br>
Pb 6.40746106 6.04808537 25.84386028<br>
I 3.20373108 6.16571088 25.84386028<br>
I 6.40746051 2.89948619 25.84386028<br>
I 0.00000101 5.76270558 29.01264528<br>
C 3.20373698 9.52854956 29.01264528<br>
N 4.36830205 8.93383664 29.01264528<br>
N 2.03914607 8.93383664 29.01264528<br>
H 3.20373076 10.62530413 29.01264528<br>
H 5.20200492 9.52787365 29.01264528<br>
H 4.49794030 7.91678234 29.01264528<br>
H 1.90952027 7.91678234 29.01264528<br>
H 1.20545622 9.52787365 29.01264528<br>
Pb 6.40746106 12.31368037 25.84386028<br>
I 3.20373108 12.43130588 25.84386028<br>
I 6.40746051 9.16508119 25.84386028<br>
I 0.00000101 12.02830057 29.01264528<br>
C 3.20373698 3.26295456 35.35018939<br>
N 4.36830205 2.66824164 35.35018939<br>
N 2.03914607 2.66824164 35.35018939<br>
H 3.20373076 4.35970913 35.35018939<br>
H 5.20200492 3.26227865 35.35018939<br>
H 4.49794030 1.65118734 35.35018939<br>
H 1.90952027 1.65118734 35.35018939<br>
H 1.20545622 3.26227865 35.35018939<br>
Pb 6.40746106 6.04808537 32.18140439<br>
I 3.20373108 6.16571088 32.18140439<br>
I 6.40746051 2.89948619 32.18140439<br>
I 0.00000101 5.76270558 35.35018939<br>
C 3.20373698 9.52854956 35.35018939<br>
N 4.36830205 8.93383664 35.35018939<br>
N 2.03914607 8.93383664 35.35018939<br>
H 3.20373076 10.62530413 35.35018939<br>
H 5.20200492 9.52787365 35.35018939<br>
H 4.49794030 7.91678234 35.35018939<br>
H 1.90952027 7.91678234 35.35018939<br>
H 1.20545622 9.52787365 35.35018939<br>
Pb 6.40746106 12.31368037 32.18140439<br>
I 3.20373108 12.43130588 32.18140439<br>
I 6.40746051 9.16508119 32.18140439<br>
I 0.00000101 12.02830057 35.35018939<br>
C -2.65922562 1.02746622 13.15267801<br>
C -1.57082020 2.76789659 14.15213700<br>
C -1.55249267 1.43382279 13.92545145<br>
C -2.76678501 3.43396657 13.80880118<br>
C -0.51572401 0.59007742 14.27042957<br>
C 0.45127539 2.57771266 15.36479250<br>
C 0.54032636 1.13871696 14.89500427<br>
C -0.61858466 3.46111062 14.87552012<br>
C 1.75850840 0.45260751 14.42517077<br>
C 2.51877126 2.72823145 14.25997933<br>
C 2.54527275 1.46853929 13.80948684<br>
C 1.69149484 3.42061251 15.24764489<br>
C -2.84434923 4.73311498 13.75015587<br>
C -1.79251576 6.80155604 13.82062727<br>
C -1.71556103 5.46156288 14.02089871<br>
C -2.79591766 7.89012407 13.91075998<br>
C -0.67171524 4.85078215 14.72657807<br>
C 0.42299842 7.09269756 14.52980725<br>
C 0.31418038 5.75006370 15.32008815<br>
C -0.54822530 7.37927093 13.62065670<br>
C 1.58501883 4.93901110 15.15192558<br>
C 1.95672818 6.38683569 12.97082740<br>
C 2.39800998 5.48893963 14.08928384<br>
C 2.19010582 7.82391704 13.36789777<br>
C -2.58931431 9.73216977 11.12323260<br>
C -1.53736385 11.49261513 12.63531287<br>
C -1.43991415 10.25590370 11.85590265<br>
C -2.46212319 12.58463568 12.27360914<br>
C -0.60003148 9.34961386 12.41523759<br>
C 0.61521796 10.90977347 13.68739727<br>
C 0.56702168 9.72454135 13.05961564<br>
C -0.57311928 11.74387481 13.77090253<br>
C 1.73778864 8.96596466 12.44952664<br>
C 2.44039831 11.26999757 12.43362532<br>
C 2.66220529 10.00525725 12.01318349<br>
C 1.83430055 11.66382030 13.76046404<br>
Cl -0.00001799 6.04797424 17.07363791<br>
Cl 1.25165378 8.40223027 10.76754187<br>
O -1.79125675 11.13196776 14.04477237<br>
O 2.87346590 12.19705486 11.50562577<br>
O 2.66595523 5.77705032 15.51329335<br>
O 1.68196546 5.86106544 11.91469705<br>
O 2.44111071 11.89613785 15.06748010<br>
O 3.89019144 8.86144083 14.58391140<br>
O -2.48663871 8.96018517 10.18744705<br>
O -0.74483722 7.99628057 12.39035840<br>
O 1.51084248 7.88917390 14.66305294<br>
O 1.28942315 2.85893197 16.48674549<br>
<br>
<br>
K_POINTS gamma<br>
<br>
</p>
<p><br>
</p>
<p><br>
</p>
<p><font size="+2"><b>-----------------------------------------------------test2.out--------------------------------------------</b></font></p>
<p><font size="+1"><b><br>
</b></font></p>
<p><br>
Program PWSCF v.6.3 starts on 10Apr2019 at 15:35:34 <br>
<br>
This program is part of the open-source Quantum ESPRESSO
suite<br>
for quantum simulation of materials; please cite<br>
"P. Giannozzi et al., J. Phys.:Condens. Matter 21
395502 (2009);<br>
"P. Giannozzi et al., J. Phys.:Condens. Matter 29
465901 (2017);<br>
URL <a class="moz-txt-link-freetext"
href="http://www.quantum-espresso.org" moz-do-not-send="true">http://www.quantum-espresso.org</a>",
<br>
in publications or presentations arising from this work.
More details at<br>
<a class="moz-txt-link-freetext"
href="http://www.quantum-espresso.org/quote"
moz-do-not-send="true">http://www.quantum-espresso.org/quote</a><br>
<br>
Parallel version (MPI), running on 8 processors<br>
<br>
MPI processes distributed on 1 nodes<br>
R & G space division: proc/nbgrp/npool/nimage =
8<br>
Reading input from
/lustre/home/acct-mseyxd/mseyxd/QE/GO-Cl/FAPBI3_bonding/scf/1x2x3_matching/bonding.scf.in<br>
Warning: card &IONS ignored<br>
Warning: card / ignored<br>
Warning: card &CELL ignored<br>
Warning: card / ignored<br>
<br>
Current dimensions of program PWSCF are:<br>
Max number of different atomic species (ntypx) = 10<br>
Max number of k-points (npk) = 40000<br>
Max angular momentum in pseudopotentials (lmaxx) = 3<br>
file C.pbesol-n-kjpaw_psl.1.0.0.UPF:
wavefunction(s) 2S 2P renormalized<br>
file N.pbesol-n-kjpaw_psl.0.1.UPF:
wavefunction(s) 2P renormalized<br>
file H.pbesol-kjpaw_psl.0.1.UPF: wavefunction(s)
1S renormalized<br>
file Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF:
wavefunction(s) 6S 6P 5D renormalized<br>
file I.pbesol-n-kjpaw_psl.1.0.0.UPF:
wavefunction(s) 5S renormalized<br>
file O.pbesol-n-kjpaw_psl.1.0.0.UPF:
wavefunction(s) 2S 2P renormalized<br>
file Cl.pbesol-n-kjpaw_psl.1.0.0.UPF:
wavefunction(s) 3S 3P renormalized<br>
<br>
gamma-point specific algorithms are used<br>
<br>
Subspace diagonalization in iterative solution of the
eigenvalue problem:<br>
a serial algorithm will be used<br>
<br>
<br>
Parallelization info<br>
--------------------<br>
sticks: dense smooth PW G-vecs: dense
smooth PW<br>
Min 1140 570 141 356988
126222 15758<br>
Max 1142 572 142 357012
126236 15798<br>
Sum 9123 4565 1135 2856023
1009807 126259<br>
<br>
<br>
Title: <br>
# Quantum Espresso PWSCF output snapshot #
0 <br>
<br>
<br>
bravais-lattice index = 0<br>
lattice parameter (alat) = 12.1083 a.u.<br>
unit-cell volume = 21138.7101 (a.u.)^3<br>
number of atoms/cell = 120<br>
number of atomic types = 7<br>
number of electrons = 542.00<br>
number of Kohn-Sham states= 325<br>
kinetic-energy cutoff = 50.0000 Ry<br>
charge density cutoff = 400.0000 Ry<br>
convergence threshold = 1.0E-07<br>
mixing beta = 0.5000<br>
number of iterations used = 8 plain mixing<br>
Exchange-correlation = SLA PW PSX PSC ( 1 4 10 8 0
0)<br>
<br>
celldm(1)= 12.108300 celldm(2)= 0.000000 celldm(3)=
0.000000<br>
celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)=
0.000000<br>
<br>
crystal axes: (cart. coord. in units of alat)<br>
a(1) = ( 1.000000 0.000000 0.000000 ) <br>
a(2) = ( 0.000000 1.955726 0.000000 ) <br>
a(3) = ( 0.000000 0.000000 6.088649 ) <br>
<br>
reciprocal axes: (cart. coord. in units 2 pi/alat)<br>
b(1) = ( 1.000000 0.000000 0.000000 ) <br>
b(2) = ( 0.000000 0.511319 0.000000 ) <br>
b(3) = ( 0.000000 0.000000 0.164240 ) <br>
<br>
<br>
PseudoPot. # 1 for C read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/C.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
MD5 check sum: f9b2fe17d1f478429498b05d17159f9e<br>
Pseudo is Projector augmented-wave + core cor, Zval = 4.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1073 points, 4 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 2 for N read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/N.pbesol-n-kjpaw_psl.0.1.UPF<br>
MD5 check sum: 15bd223d5d75e9eda893d0f4e6bdad1b<br>
Pseudo is Projector augmented-wave + core cor, Zval = 5.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1085 points, 4 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 3 for H read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/H.pbesol-kjpaw_psl.0.1.UPF<br>
MD5 check sum: 27a6b98f1514c59d399e798f1258b8b7<br>
Pseudo is Projector augmented-wave, Zval = 1.0<br>
Generated using "atomic" code by A. Dal Corso v.5.0.2 svn
rev. 9415<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 929 points, 2 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 4 for Pb read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/Pb.pbesol-dn-kjpaw_psl.1.0.0.UPF<br>
MD5 check sum: 56da3be0db09ba43f309b470f7bff7d1<br>
Pseudo is Projector augmented-wave + core cor, Zval = 14.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1281 points, 6 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 5 for I read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/I.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
MD5 check sum: 6038403ff9b03366b27f71806436e734<br>
Pseudo is Projector augmented-wave + core cor, Zval = 7.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1247 points, 6 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 6 for O read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/O.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
MD5 check sum: cb766521a97cf798d01896eaf7ac9a0a<br>
Pseudo is Projector augmented-wave + core cor, Zval = 6.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1095 points, 4 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
PseudoPot. # 7 for Cl read from file:<br>
/lustre/home/acct-mseyxd/mseyxd/QE/qe-6.3/pseudo/Cl.pbesol-n-kjpaw_psl.1.0.0.UPF<br>
MD5 check sum: 939a64fc035742408689cdf8470f8314<br>
Pseudo is Projector augmented-wave + core cor, Zval = 7.0<br>
Generated using "atomic" code by A. Dal Corso v.6.3<br>
Shape of augmentation charge: PSQ<br>
Using radial grid of 1157 points, 6 beta functions with: <br>
l(1) = 0<br>
l(2) = 0<br>
l(3) = 1<br>
l(4) = 1<br>
l(5) = 2<br>
l(6) = 2<br>
Q(r) pseudized with 0 coefficients <br>
<br>
<br>
atomic species valence mass pseudopotential<br>
C 4.00 12.01100 C ( 1.00)<br>
N 5.00 14.00700 N ( 1.00)<br>
H 1.00 1.00800 H ( 1.00)<br>
Pb 14.00 207.20000 Pb( 1.00)<br>
I 7.00 126.90000 I ( 1.00)<br>
O 6.00 15.99900 O ( 1.00)<br>
Cl 7.00 35.45000 Cl( 1.00)<br>
<br>
No symmetry found<br>
<br>
<br>
<br>
Cartesian axes<br>
<br>
site n. atom positions (alat units)<br>
1 C tau( 1) = ( 0.5000029 0.5092449
3.5388726 )<br>
2 N tau( 2) = ( 0.6817550 0.4164289
3.5388726 )<br>
3 N tau( 3) = ( 0.3182468 0.4164289
3.5388726 )<br>
4 H tau( 4) = ( 0.5000020 0.6804140
3.5388726 )<br>
5 H tau( 5) = ( 0.8118699 0.5091394
3.5388726 )<br>
6 H tau( 6) = ( 0.7019875 0.2576986
3.5388726 )<br>
7 H tau( 7) = ( 0.2980163 0.2576986
3.5388726 )<br>
8 H tau( 8) = ( 0.1881339 0.5091394
3.5388726 )<br>
9 Pb tau( 9) = ( 1.0000038 0.9439166
3.0443246 )<br>
10 I tau( 10) = ( 0.5000020 0.9622742
3.0443246 )<br>
11 I tau( 11) = ( 1.0000038 0.4525189
3.0443246 )<br>
12 I tau( 12) = ( 0.0000002 0.8993777
3.5388726 )<br>
13 C tau( 13) = ( 0.5000029 1.4871079
3.5388726 )<br>
14 N tau( 14) = ( 0.6817550 1.3942919
3.5388726 )<br>
15 N tau( 15) = ( 0.3182468 1.3942919
3.5388726 )<br>
16 H tau( 16) = ( 0.5000020 1.6582770
3.5388726 )<br>
17 H tau( 17) = ( 0.8118699 1.4870024
3.5388726 )<br>
18 H tau( 18) = ( 0.7019875 1.2355616
3.5388726 )<br>
19 H tau( 19) = ( 0.2980163 1.2355616
3.5388726 )<br>
20 H tau( 20) = ( 0.1881339 1.4870024
3.5388726 )<br>
21 Pb tau( 21) = ( 1.0000038 1.9217796
3.0443246 )<br>
22 I tau( 22) = ( 0.5000020 1.9401372
3.0443246 )<br>
23 I tau( 23) = ( 1.0000038 1.4303819
3.0443246 )<br>
24 I tau( 24) = ( 0.0000002 1.8772407
3.5388726 )<br>
25 C tau( 25) = ( 0.5000029 0.5092449
4.5279646 )<br>
26 N tau( 26) = ( 0.6817550 0.4164289
4.5279646 )<br>
27 N tau( 27) = ( 0.3182468 0.4164289
4.5279646 )<br>
28 H tau( 28) = ( 0.5000020 0.6804140
4.5279646 )<br>
29 H tau( 29) = ( 0.8118699 0.5091394
4.5279646 )<br>
30 H tau( 30) = ( 0.7019875 0.2576986
4.5279646 )<br>
31 H tau( 31) = ( 0.2980163 0.2576986
4.5279646 )<br>
32 H tau( 32) = ( 0.1881339 0.5091394
4.5279646 )<br>
33 Pb tau( 33) = ( 1.0000038 0.9439166
4.0334166 )<br>
34 I tau( 34) = ( 0.5000020 0.9622742
4.0334166 )<br>
35 I tau( 35) = ( 1.0000038 0.4525189
4.0334166 )<br>
36 I tau( 36) = ( 0.0000002 0.8993777
4.5279646 )<br>
37 C tau( 37) = ( 0.5000029 1.4871079
4.5279646 )<br>
38 N tau( 38) = ( 0.6817550 1.3942919
4.5279646 )<br>
39 N tau( 39) = ( 0.3182468 1.3942919
4.5279646 )<br>
40 H tau( 40) = ( 0.5000020 1.6582770
4.5279646 )<br>
41 H tau( 41) = ( 0.8118699 1.4870024
4.5279646 )<br>
42 H tau( 42) = ( 0.7019875 1.2355616
4.5279646 )<br>
43 H tau( 43) = ( 0.2980163 1.2355616
4.5279646 )<br>
44 H tau( 44) = ( 0.1881339 1.4870024
4.5279646 )<br>
45 Pb tau( 45) = ( 1.0000038 1.9217796
4.0334166 )<br>
46 I tau( 46) = ( 0.5000020 1.9401372
4.0334166 )<br>
47 I tau( 47) = ( 1.0000038 1.4303819
4.0334166 )<br>
48 I tau( 48) = ( 0.0000002 1.8772407
4.5279646 )<br>
49 C tau( 49) = ( 0.5000029 0.5092449
5.5170566 )<br>
50 N tau( 50) = ( 0.6817550 0.4164289
5.5170566 )<br>
51 N tau( 51) = ( 0.3182468 0.4164289
5.5170566 )<br>
52 H tau( 52) = ( 0.5000020 0.6804140
5.5170566 )<br>
53 H tau( 53) = ( 0.8118699 0.5091394
5.5170566 )<br>
54 H tau( 54) = ( 0.7019875 0.2576986
5.5170566 )<br>
55 H tau( 55) = ( 0.2980163 0.2576986
5.5170566 )<br>
56 H tau( 56) = ( 0.1881339 0.5091394
5.5170566 )<br>
57 Pb tau( 57) = ( 1.0000038 0.9439166
5.0225086 )<br>
58 I tau( 58) = ( 0.5000020 0.9622742
5.0225086 )<br>
59 I tau( 59) = ( 1.0000038 0.4525189
5.0225086 )<br>
60 I tau( 60) = ( 0.0000002 0.8993777
5.5170566 )<br>
61 C tau( 61) = ( 0.5000029 1.4871079
5.5170566 )<br>
62 N tau( 62) = ( 0.6817550 1.3942919
5.5170566 )<br>
63 N tau( 63) = ( 0.3182468 1.3942919
5.5170566 )<br>
64 H tau( 64) = ( 0.5000020 1.6582770
5.5170566 )<br>
65 H tau( 65) = ( 0.8118699 1.4870024
5.5170566 )<br>
66 H tau( 66) = ( 0.7019875 1.2355616
5.5170566 )<br>
67 H tau( 67) = ( 0.2980163 1.2355616
5.5170566 )<br>
68 H tau( 68) = ( 0.1881339 1.4870024
5.5170566 )<br>
69 Pb tau( 69) = ( 1.0000038 1.9217796
5.0225086 )<br>
70 I tau( 70) = ( 0.5000020 1.9401372
5.0225086 )<br>
71 I tau( 71) = ( 1.0000038 1.4303819
5.0225086 )<br>
72 I tau( 72) = ( 0.0000002 1.8772407
5.5170566 )<br>
73 C tau( 73) = ( -0.4150218 0.1603553
2.0527208 )<br>
74 C tau( 74) = ( -0.2451558 0.4319819
2.2087050 )<br>
75 C tau( 75) = ( -0.2422954 0.2237748
2.1733265 )<br>
76 C tau( 76) = ( -0.4318084 0.5359346
2.1551211 )<br>
77 C tau( 77) = ( -0.0804884 0.0920926
2.2271668 )<br>
78 C tau( 78) = ( 0.0704299 0.4023002
2.3979625 )<br>
79 C tau( 79) = ( 0.0843280 0.1777180
2.3246433 )<br>
80 C tau( 80) = ( -0.0965417 0.5401709
2.3216025 )<br>
81 C tau( 81) = ( 0.2744480 0.0706378
2.2513170 )<br>
82 C tau( 82) = ( 0.3931012 0.4257914
2.2255358 )<br>
83 C tau( 83) = ( 0.3972373 0.2291930
2.1552281 )<br>
84 C tau( 84) = ( 0.2639893 0.5338504
2.3796795 )<br>
85 C tau( 85) = ( -0.4439138 0.7386909
2.1459684 )<br>
86 C tau( 86) = ( -0.2797555 1.0615097
2.1569667 )<br>
87 C tau( 87) = ( -0.2677453 0.8523788
2.1882228 )<br>
88 C tau( 88) = ( -0.4363551 1.2314011
2.1710336 )<br>
89 C tau( 89) = ( -0.1048337 0.7570551
2.2983573 )<br>
90 C tau( 90) = ( 0.0660168 1.1069478
2.2676475 )<br>
91 C tau( 91) = ( 0.0490337 0.8974047
2.3909856 )<br>
92 C tau( 92) = ( -0.0855608 1.1516729
2.1257576 )<br>
93 C tau( 93) = ( 0.2473718 0.7708248
2.3647407 )<br>
94 C tau( 94) = ( 0.3053839 0.9967849
2.0243396 )<br>
95 C tau( 95) = ( 0.3742542 0.8566514
2.1988956 )<br>
96 C tau( 96) = ( 0.3418069 1.2210682
2.0863099 )<br>
97 C tau( 97) = ( -0.4041108 1.5188867
1.7359880 )<br>
98 C tau( 98) = ( -0.2399343 1.7936370
1.9719763 )<br>
99 C tau( 99) = ( -0.2247255 1.6006251
1.8503348 )<br>
100 C tau( 100) = ( -0.3842603 1.9640672
1.9155257 )<br>
101 C tau( 101) = ( -0.0936461 1.4591817
1.9376295 )<br>
102 C tau( 102) = ( 0.0960162 1.7026737
2.1361737 )<br>
103 C tau( 103) = ( 0.0884943 1.5176961
2.0381967 )<br>
104 C tau( 104) = ( -0.0894460 1.8328508
2.1492063 )<br>
105 C tau( 105) = ( 0.2712143 1.3993061
1.9429809 )<br>
106 C tau( 106) = ( 0.3808697 1.7588934
1.9404992 )<br>
107 C tau( 107) = ( 0.4154868 1.5615071
1.8748814 )<br>
108 C tau( 108) = ( 0.2862768 1.8203568
2.1475771 )<br>
109 Cl tau( 109) = ( -0.0000028 0.9438992
2.6646597 )<br>
110 Cl tau( 110) = ( 0.1953439 1.3113248
1.6804758 )<br>
111 O tau( 111) = ( -0.2795590 1.7373513
2.1919488 )<br>
112 O tau( 112) = ( 0.4484580 1.9035780
1.7956676 )<br>
113 O tau( 113) = ( 0.4160721 0.9016165
2.4211389 )<br>
114 O tau( 114) = ( 0.2625021 0.9147286
1.8595108 )<br>
115 O tau( 115) = ( 0.3809809 1.8566143
2.3515614 )<br>
116 O tau( 116) = ( 0.6071370 1.3829932
2.2760915 )<br>
117 O tau( 117) = ( -0.3880864 1.3984041
1.5899412 )<br>
118 O tau( 118) = ( -0.1162457 1.2479688
1.9337466 )<br>
119 O tau( 119) = ( 0.2357952 1.2312528
2.2884430 )<br>
120 O tau( 120) = ( 0.2012385 0.4461897
2.5730642 )<br>
<br>
number of k points= 1 Marzari-Vanderbilt smearing,
width (Ry)= 0.0010<br>
cart. coord. in units 2pi/alat<br>
k( 1) = ( 0.0000000 0.0000000 0.0000000), wk
= 2.0000000<br>
<br>
Dense grid: 1428012 G-vectors FFT dimensions: ( 80,
160, 480)<br>
<br>
Smooth grid: 504904 G-vectors FFT dimensions: ( 60,
108, 360)<br>
<br>
Estimated max dynamical RAM per process > 965.66 MB<br>
<br>
Estimated total dynamical RAM > 7.54 GB<br>
----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D<br>
The code is running with the 2D cutoff<br>
Please refer to:<br>
Sohier, T., Calandra, M., & Mauri, F. (2017), <br>
Density functional perturbation theory for gated
two-dimensional heterostructures:<br>
Theoretical developments and application to flexural phonons
in graphene.<br>
Physical Review B, 96(7), 75448. <a
class="moz-txt-link-freetext"
href="https://doi.org/10.1103/PhysRevB.96.075448"
moz-do-not-send="true">https://doi.org/10.1103/PhysRevB.96.075448</a><br>
----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D----2D<br>
<br>
Check: negative/imaginary core charge= -0.000002
0.000000<br>
<br>
Initial potential from superposition of free atoms<br>
Check: negative starting charge= -0.001132<br>
<br>
starting charge 541.98383, renormalised to 542.00000<br>
<br>
negative rho (up, down): 1.132E-03 0.000E+00<br>
Starting wfcs are 420 randomized atomic wfcs<br>
Checking if some PAW data can be deallocated... <br>
<br>
total cpu time spent up to now is 125.6 secs<br>
<br>
Self-consistent Calculation<br>
<br>
iteration # 1 ecut= 50.00 Ry beta= 0.50<br>
Davidson diagonalization with overlap<br>
c_bands: 3 eigenvalues not converged<br>
ethr = 1.00E-02, avg # of iterations = 40.0<br>
<br>
negative rho (up, down): 1.031E-05 0.000E+00<br>
<br>
total cpu time spent up to now is 2094.5 secs<br>
<br>
total energy = 82142.85683667 Ry<br>
Harris-Foulkes estimate = -53335.51769720 Ry<br>
estimated scf accuracy < 111068.31785845 Ry<br>
<br>
End of self-consistent calculation<br>
<br>
convergence NOT achieved after 1 iterations: stopping<br>
<br>
Writing output data file bonding_scf.save/<br>
<br>
init_run : 119.18s CPU 120.33s WALL ( 1
calls)<br>
electrons : 1961.71s CPU 1969.12s WALL ( 1
calls)<br>
<br>
Called by init_run:<br>
wfcinit : 52.26s CPU 52.44s WALL ( 1
calls)<br>
potinit : 19.26s CPU 19.33s WALL ( 1
calls)<br>
hinit0 : 36.63s CPU 36.68s WALL ( 1
calls)<br>
<br>
Called by electrons:<br>
c_bands : 1919.78s CPU 1923.97s WALL ( 1
calls)<br>
sum_band : 28.22s CPU 30.08s WALL ( 1
calls)<br>
v_of_rho : 2.26s CPU 2.35s WALL ( 2
calls)<br>
newd : 20.58s CPU 22.50s WALL ( 2
calls)<br>
PAW_pot : 4.00s CPU 4.00s WALL ( 2
calls)<br>
mix_rho : 0.23s CPU 0.24s WALL ( 1
calls)<br>
<br>
Called by c_bands:<br>
init_us_2 : 0.22s CPU 0.27s WALL ( 3
calls)<br>
regterg : 1919.41s CPU 1923.60s WALL ( 2
calls)<br>
<br>
Called by sum_band:<br>
sum_band:bec : 0.00s CPU 0.00s WALL ( 1
calls)<br>
addusdens : 16.57s CPU 17.94s WALL ( 1
calls)<br>
<br>
Called by *egterg:<br>
h_psi : 680.38s CPU 682.69s WALL ( 43
calls)<br>
s_psi : 259.57s CPU 259.75s WALL ( 43
calls)<br>
g_psi : 0.93s CPU 0.94s WALL ( 40
calls)<br>
rdiaghg : 52.76s CPU 52.86s WALL ( 41
calls)<br>
<br>
Called by h_psi:<br>
h_psi:pot : 679.62s CPU 681.90s WALL ( 43
calls)<br>
h_psi:calbec : 255.27s CPU 255.54s WALL ( 43
calls)<br>
vloc_psi : 164.42s CPU 166.01s WALL ( 43
calls)<br>
add_vuspsi : 259.93s CPU 260.35s WALL ( 43
calls)<br>
<br>
General routines<br>
calbec : 263.20s CPU 263.88s WALL ( 44
calls)<br>
fft : 2.33s CPU 2.43s WALL ( 23
calls)<br>
ffts : 0.09s CPU 0.09s WALL ( 3
calls)<br>
fftw : 128.50s CPU 130.07s WALL ( 10237
calls)<br>
interpolate : 0.25s CPU 0.26s WALL ( 2
calls)<br>
davcio : 0.00s CPU 0.10s WALL ( 3
calls)<br>
<br>
Parallel routines<br>
fft_scatt_xy : 23.50s CPU 23.55s WALL ( 10263
calls)<br>
fft_scatt_yz : 10.98s CPU 12.22s WALL ( 10263
calls)<br>
<br>
PWSCF : 34m45.53s CPU 34m55.12s WALL<br>
<br>
<br>
This run was terminated on: 16:10:30 10Apr2019 <br>
<br>
=------------------------------------------------------------------------------=<br>
JOB DONE.<br>
=------------------------------------------------------------------------------=<br>
</p>
<p><br>
</p>
<p><br>
</p>
<p><br>
</p>
<p><br>
</p>
<p><br>
</p>
<p><font size="+1"><b>-----------------------------------------------------SLURM
command-------------------------------------</b></font></p>
<p><font size="+1"><b><br>
</b></font></p>
<p>#!/bin/bash<br>
<br>
#SBATCH --job-name=QE_GO-Cl_bonding_scf<br>
#SBATCH --partition=cpu<br>
#SBATCH --mail-type=end<br>
#SBATCH --mail-user=julien_barbaud@sjtu.edu.cn<br>
#SBATCH --output=bonding.scf.slurm.out<br>
#SBATCH --error=bonding.scf.slurm.err<br>
#SBATCH -p cpu<br>
#SBATCH -n 8 <br>
#SBATCH --ntasks-per-node=8<br>
<br>
ulimit -l unlimited<br>
ulimit -s unlimited<br>
<br>
INPUT=$HOME/QE/GO-Cl/FAPBI3_bonding/scf/1x2x3_matching/bonding.scf.in<br>
EXEC=$HOME/QE/qe-6.3/bin/pw.x<br>
<br>
srun --mpi=pmi2 $EXEC -in $INPUT <br>
<br>
</p>
<br>
<fieldset class="mimeAttachmentHeader"></fieldset>
<pre class="moz-quote-pre" wrap="">_______________________________________________
users mailing list
<a class="moz-txt-link-abbreviated" href="mailto:users@lists.quantum-espresso.org">users@lists.quantum-espresso.org</a>
<a class="moz-txt-link-freetext" href="https://lists.quantum-espresso.org/mailman/listinfo/users">https://lists.quantum-espresso.org/mailman/listinfo/users</a></pre>
</blockquote>
<br>
<pre class="moz-signature" cols="72">--
Dr. rer. nat. Thomas Brumme
Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry
Leipzig University
Phillipp-Rosenthal-Strasse 31
04103 Leipzig
Tel: +49 (0)341 97 36456
email: <a class="moz-txt-link-abbreviated" href="mailto:thomas.brumme@uni-leipzig.de">thomas.brumme@uni-leipzig.de</a>
</pre>
</body>
</html>