<div dir="ltr"><div dir="ltr"><div dir="ltr">Dear Giuseppe<br class="gmail-m_-1635502892304459671gmail-Apple-interchange-newline"><div>I took your advice but the E[cation+anion] system was very difficult to be converged.</div><div>I tried to reduce the mixing_beta and conv_thr with no results.</div><div>Thanks </div></div></div></div><br><div class="gmail_quote"><div dir="ltr">On Sun, 9 Dec 2018 at 14:37, Mohamed Safy <<a href="mailto:msafy505@gmail.com" target="_blank">msafy505@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Dear Giuseppe<div>Many thanks for your response.</div><div>I will try with your advice and give you the response</div><div>Thanks</div></div><br><div class="gmail_quote"><div dir="ltr">On Thu, 6 Dec 2018 at 12:24, Giuseppe Mattioli <<a href="mailto:giuseppe.mattioli@ism.cnr.it" target="_blank">giuseppe.mattioli@ism.cnr.it</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><br>
Dear Mohamed<br>
<br>
charged ions are tricky in DFT for multiple reasons. The excess and <br>
well localized charge can suffer a very strong delocalization error <br>
which may lead to unbound electronic states. Moreover, charged ions <br>
are generally not stable in gas phase. They often require a polar <br>
solvent to exist. Finally, in periodic boundary conditions a <br>
distribution of charge (aka "jellium") is required to compensate the <br>
positive/negative charge in a supercell, and the reference potential <br>
is affected by the insertion of such charge, so that for example you <br>
cannot calculate the ionization energy of a molecule as <br>
E[q=+1]-E[q=0], as you do when you use GTO codes.<br>
<br>
This said, it is not impossible to calculate the adsorption energy of <br>
charged ions on a given substrate, provided that:<br>
<br>
1) You use a hybrid EXX-GGA functional. This is not mandatory, but it <br>
is recommended because it generally avoids the accommodation of excess <br>
electrons in unbound states.<br>
<br>
2) You embed your system in an implicit dielectric medium (maybe <br>
"water", in your case). In QE this is easily provided by the <br>
QUANTUM-ENVIRON plug-in.<br>
<br>
Then you can calculate the adsorption energy in two ways:<br>
<br>
A) you can start from the interacting configuration of your system and <br>
progressively remove the ion in several snapshots (or a few snapshot, <br>
depending on the computational resources you can afford). Then you <br>
build an interaction potential curve and yiu try to estimate its <br>
asymptotic value. It requires also a large supercell, of course.<br>
<br>
B) you can use a little trick (which however requires 1 and 2 above). <br>
Put a cation in a part of your supercell where the interaction energy <br>
with you polymer+anion system is negligible. Then calculate the energy <br>
of your cation+anion system in a neutral supercell where their charge <br>
is exactly compensated. The energy difference between three neutral <br>
supercells E[polymer+anion+cation]-E[polymer]-E[cation+anion] should <br>
be a sensible estimate of the anion adsorption energy<br>
<br>
HTH<br>
Giuseppe<br>
<br>
Mohamed Safy <<a href="mailto:msafy505@gmail.com" target="_blank">msafy505@gmail.com</a>> ha scritto:<br>
<br>
> Thanks for your valuable information but I have experimental results which<br>
> indicate the presence of adsorption. is this can be considered a<br>
> conflict?. I tried to validate the method using a smaller system. I<br>
> studied the adsorption of H2 on Graphene.<br>
> The adsorption energy was 17.17 kcal/mol.<br>
> the systems are below<br>
> Complex<br>
> &CONTROL<br>
> calculation = "scf"<br>
> forc_conv_thr = 1.00000e-03<br>
> max_seconds = 1.72800e+05<br>
> nstep = 1000<br>
> verbosity='high'<br>
> restart_mode='from_scratch'<br>
> iprint=1<br>
> tprnfor=.true.<br>
> pseudo_dir = '/lfs01/workdirs/val/Test/pseudo',<br>
> outdir='/lfs01/workdirs/val/Test/Out/C',<br>
> /<br>
><br>
> &SYSTEM<br>
> a = 7.40525e+00<br>
> c = 9.99906e+00<br>
> ibrav = 4<br>
> nat = 19<br>
> ntyp = 2<br>
> ecutwfc = 45.0 ,<br>
> ecutrho = 450.0 ,<br>
> input_DFT = 'PBE-D2' ,<br>
> occupations = 'smearing' ,<br>
> degauss = 1.0d-4 ,<br>
> vdw_corr = 'Grimme-D2'<br>
> assume_isolated = 'mt'<br>
> smearing = 'marzari-vanderbilt' ,<br>
> /<br>
><br>
> &ELECTRONS<br>
> conv_thr = 1.0d-7 ,<br>
> electron_maxstep = 1000<br>
> mixing_mode = 'plain' ,<br>
> mixing_beta = 0.3d0 ,<br>
> /<br>
><br>
> &IONS<br>
> ion_dynamics='bfgs'<br>
> upscale=20.0<br>
> /<br>
><br>
> &CELL<br>
> /<br>
><br>
> K_POINTS {automatic}<br>
> 3 3 3 0 0 0<br>
><br>
> ATOMIC_SPECIES<br>
> C 12.01070 C.pbe-n-kjpaw_psl.1.0.0.UPF<br>
> H 1.00794 H.pbe-kjpaw_psl.1.0.0.UPF<br>
> ATOMIC_POSITIONS {angstrom}<br>
> C 1.280642168 0.685951341 -0.000431048<br>
> C -1.236653977 3.539880413 -0.001566184<br>
> C -0.000377617 2.903279130 -0.002911997<br>
> C -2.489554615 5.710262290 -0.000852594<br>
> C -1.229721248 4.990709007 -0.000338911<br>
> C 2.449440629 1.438897112 0.002319254<br>
> C 3.702198081 0.707454065 -0.001265064<br>
> C 1.236237242 3.539760579 0.000958837<br>
> C 2.478517989 2.856386275 0.004841971<br>
> C -0.000246038 5.700684987 -0.000997560<br>
> C 1.229347070 4.990770096 -0.000716604<br>
> C 4.955272233 1.438694069 -0.002138838<br>
> C 6.124721243 0.686321393 0.000987763<br>
> C 3.702044434 3.562937903 0.001926384<br>
> C 4.925831271 2.856536000 -0.001755553<br>
> C 2.489209922 5.710445901 -0.000342579<br>
> C 3.702309214 4.976078918 -0.000048704<br>
> H 3.360489134 2.350036356 -3.014528460<br>
> H 2.719672863 2.741584163 -3.037540110<br>
><br>
><br>
> Graphen<br>
> &CONTROL<br>
> calculation = "scf"<br>
> forc_conv_thr = 1.00000e-03<br>
> max_seconds = 1.72800e+05<br>
> nstep = 1000<br>
> verbosity='high'<br>
> restart_mode='from_scratch'<br>
> iprint=1<br>
> tprnfor=.true.<br>
> pseudo_dir = '/lfs01/Val/cairo010u1/Test/pseudo',<br>
> outdir='/lfs01/workdirs/Val/Test/Out/G',<br>
> /<br>
><br>
> &SYSTEM<br>
> a = 7.40525e+00<br>
> c = 9.99906e+00<br>
> ibrav = 4<br>
> nat = 17<br>
> ntyp = 1<br>
> ecutwfc = 45.0 ,<br>
> ecutrho = 450.0 ,<br>
> input_DFT = 'PBE-D2' ,<br>
> occupations = 'smearing' ,<br>
> degauss = 1.0d-4 ,<br>
> vdw_corr = 'Grimme-D2'<br>
> assume_isolated = 'mt'<br>
> smearing = 'marzari-vanderbilt' ,<br>
> /<br>
><br>
> &ELECTRONS<br>
> conv_thr = 1.0d-10 ,<br>
> electron_maxstep = 1000<br>
> mixing_mode = 'plain' ,<br>
> mixing_beta = 0.3d0 ,<br>
> /<br>
><br>
> &IONS<br>
> ion_dynamics='bfgs'<br>
> upscale=20.0<br>
> /<br>
><br>
> &CELL<br>
> /<br>
><br>
> K_POINTS {automatic}<br>
> 3 3 3 0 0 0<br>
><br>
> ATOMIC_SPECIES<br>
> C 12.01070 C.pbe-n-kjpaw_psl.1.0.0.UPF<br>
><br>
> ATOMIC_POSITIONS {angstrom}<br>
> C 1.280642168 0.685951341 -0.000431048<br>
> C -1.236653977 3.539880413 -0.001566184<br>
> C -0.000377617 2.903279130 -0.002911997<br>
> C -2.489554615 5.710262290 -0.000852594<br>
> C -1.229721248 4.990709007 -0.000338911<br>
> C 2.449440629 1.438897112 0.002319254<br>
> C 3.702198081 0.707454065 -0.001265064<br>
> C 1.236237242 3.539760579 0.000958837<br>
> C 2.478517989 2.856386275 0.004841971<br>
> C -0.000246038 5.700684987 -0.000997560<br>
> C 1.229347070 4.990770096 -0.000716604<br>
> C 4.955272233 1.438694069 -0.002138838<br>
> C 6.124721243 0.686321393 0.000987763<br>
> C 3.702044434 3.562937903 0.001926384<br>
> C 4.925831271 2.856536000 -0.001755553<br>
> C 2.489209922 5.710445901 -0.000342579<br>
> C 3.702309214 4.976078918 -0.000048704<br>
><br>
><br>
><br>
> Hydrogen<br>
> &CONTROL<br>
> calculation = "scf"<br>
> forc_conv_thr = 1.00000e-03<br>
> max_seconds = 1.72800e+05<br>
> nstep = 1000<br>
> verbosity='high'<br>
> restart_mode='from_scratch'<br>
> iprint=1<br>
> tprnfor=.true.<br>
> pseudo_dir = '/lfs01/workdirs/Val/Test/pseudo',<br>
> outdir='/lfs01/workdirs/Val/Test/Out/HY',<br>
> /<br>
><br>
> &SYSTEM<br>
> a = 7.40525e+00<br>
> c = 9.99906e+00<br>
> ibrav = 4<br>
> nat = 2<br>
> ntyp = 1<br>
> ecutwfc = 45.0 ,<br>
> ecutrho = 450.0 ,<br>
> input_DFT = 'PBE-D2' ,<br>
> occupations = 'smearing' ,<br>
> degauss = 1.0d-4 ,<br>
> vdw_corr = 'Grimme-D2'<br>
> assume_isolated = 'mt'<br>
> smearing = 'marzari-vanderbilt' ,<br>
><br>
> /<br>
><br>
> &ELECTRONS<br>
> conv_thr = 1.0d-7 ,<br>
> electron_maxstep = 1000<br>
> mixing_mode = 'plain' ,<br>
> mixing_beta = 0.3d0 ,<br>
> /<br>
><br>
> &IONS<br>
> ion_dynamics='bfgs'<br>
> upscale=20.0<br>
> /<br>
><br>
> &CELL<br>
> /<br>
><br>
> K_POINTS {automatic}<br>
> 3 3 3 0 0 0<br>
><br>
> ATOMIC_SPECIES<br>
> H 1.00794 H.pbe-kjpaw_psl.1.0.0.UPF<br>
> ATOMIC_POSITIONS {angstrom}<br>
> H 3.360489134 2.350036356 -3.014528460<br>
> H 2.719672863 2.741584163 -3.037540110<br>
><br>
><br>
> On Wed, 5 Dec 2018 at 21:09, Stefano Baroni <<a href="mailto:baroni@sissa.it" target="_blank">baroni@sissa.it</a>> wrote:<br>
><br>
>> I know nothing about your system, but what you report simply seem the<br>
>> evidence of an endothermal adsorption, stabilized by a energy barrier.<br>
>> Have you got strong reasons to believe that this cannot be the case?<br>
>> Regards, Stefano B<br>
>><br>
>> ___<br>
>> Stefano Baroni, Trieste -- <a href="http://stefano.baroni.me" rel="noreferrer" target="_blank">http://stefano.baroni.me</a><br>
>><br>
>> > On 5 Dec 2018, at 18:45, Mohamed Safy <<a href="mailto:msafy505@gmail.com" target="_blank">msafy505@gmail.com</a>> wrote:<br>
>> ><br>
>> > Dear QE users<br>
>> > I am trying to study the adsorption of a negatively charged molecule on<br>
>> a core of polymer. The relaxed cell showed the formation of four hydrogen<br>
>> bonds (with O...H distance range between 1.7 and 1.95 angstrom). But, when<br>
>> I calculated the adsorption energy I found it a positive value (44<br>
>> kcal/mol). any advice or suggestion please.<br>
>> > Thanks in advance<br>
>> > _______________________________________________<br>
>> > users mailing list<br>
>> > <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
>> > <a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><br>
>><br>
>> _______________________________________________<br>
>> users mailing list<br>
>> <a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
>> <a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><br>
>><br>
<br>
<br>
<br>
GIUSEPPE MATTIOLI<br>
CNR - ISTITUTO DI STRUTTURA DELLA MATERIA<br>
Via Salaria Km 29,300 - C.P. 10<br>
I-00015 - Monterotondo Scalo (RM)<br>
Mob (*preferred*) +39 373 7305625<br>
Tel + 39 06 90672342 - Fax +39 06 90672316<br>
E-mail: <<a href="mailto:giuseppe.mattioli@ism.cnr.it" target="_blank">giuseppe.mattioli@ism.cnr.it</a>><br>
<br>
_______________________________________________<br>
users mailing list<br>
<a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a><br>
</blockquote></div>
</blockquote></div>