<div dir="ltr"><div>I ran three simulations: (1) Water and quartz, (2) quartz only, and (3) water only.<br></div><div><br></div><div>With pp.x I obtained the electron density along a coordinate for each simulation. Then I did:</div><div></div><div>deltaRho = Rho(Water&Quartz) - Rho(WaterOnly) - Rho(QuartzOnly)</div><div><br></div><div>Which yielded how the electron density is perturbed on each object when they are in proximity. I integrated the region around water to obtain the "charge." This region was small compared to the distance of separation (~0.5 nm region vs. 3 nm separation). Outside this region, deltaRho was equal to 0.</div><div><br></div><div>Dan<br></div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr">On Tue, Oct 16, 2018 at 3:42 AM Paolo Giannozzi <<a href="mailto:p.giannozzi@gmail.com">p.giannozzi@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>How did you compute the "charge on water"?</div><div><br></div><div>Paolo<br></div></div><br><div class="gmail_quote"><div dir="ltr">On Mon, Oct 15, 2018 at 5:57 PM Dan Gil <<a href="mailto:dan.gil9973@gmail.com" target="_blank">dan.gil9973@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Dear QE Users,</div><div><br></div><div>I am trying looking at how the electron density redistributes itself when two objects are in close proximity. The two objects in questions is a water molecule and a quartz (001) crystal.</div><div><br></div><div>At far distances (> 1 nm) between the water and the quartz, I expect (very close to) zero charge on either water or quartz. However, I am finding the contrary. At 3 nm between (defined as the distance between two closest atoms) the charge on water is ~0.01 e.</div><div><br></div><div>I am wondering if this result is expected due to the computational limitations... Or if I can mitigate this problem with a computationally efficient way.</div><div><br></div><div>Best Regards,</div><div><br></div><div>Dan Gil</div><div>PhD Candidate</div><div>Dept. Chemical and Biomolecular Engineering</div><div>Case Western Reserve University</div><div><br></div><div><br></div></div>
_______________________________________________<br>
users mailing list<br>
<a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote></div><br clear="all"><br>-- <br><div dir="ltr" class="m_-300957618047407799gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>Paolo Giannozzi, Dip. Scienze Matematiche Informatiche e Fisiche,<br>Univ. Udine, via delle Scienze 208, 33100 Udine, Italy<br>Phone +39-0432-558216, fax +39-0432-558222<br><br></div></div></div></div></div>
_______________________________________________<br>
users mailing list<br>
<a href="mailto:users@lists.quantum-espresso.org" target="_blank">users@lists.quantum-espresso.org</a><br>
<a href="https://lists.quantum-espresso.org/mailman/listinfo/users" rel="noreferrer" target="_blank">https://lists.quantum-espresso.org/mailman/listinfo/users</a></blockquote></div>