<div dir="ltr"><div>Hi fellows, <br></div><div>I am exploring the Car Parrinello dynamics for a system with hydrogens:  CH3NH3PbI3. With N-H vibrations faster than 3000 cm^-1 and a <br></div><div>fluctuating bandgap that may be as small as 1.5 eV , I guess I will need to use a thermostat for the electrons, in order not to use a very small emass and dt.</div><div>Estimating a minimum electronic frequency sqrt(2Eg/emass), using the default emass=400, I get omega_min~0.016 atomic units. For the N-H vibrations, the frequency is 3000 cm^ -1~ 0.014 atomic units . <br></div><div>I read elsewhere than a good frequency for the electron thermostat is 2-3 times the maximum phonon frequency (90THz), this led me to the value</div><div>fnosee=270.0  <br></div><div>My guess is 270 times larger than the default value fnosep=1.D0. Running in a parameter space different to what is tested is generally not a good idea.  Am I missing something ?<br></div><div><br></div><div>A related, but independent question is about the ion thermostat. <br></div><div>The vibrational frequencies of this system are very well separated: ~3000 cm^-1 for N-H and C-H,</div><div>900-1200cm^-1 for CH3NH3 molecular vibrations, and <300 cm^-1 for others. <br></div><div>Hence, should I set an intermediate fnosep=30.0 (1000 cm^-1), or should I set a Nose-Hoover chain with frequencies close to every phonon band, e.g., <br></div><div>fnosep=90.0 30.0  10.0 3.0</div><div><br></div><div>Thanks a lot,<br></div><div><br></div><div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div dir="ltr"><div dir="ltr"><div dir="ltr">
<div>Eduardo Menendez Proupin</div><div>University of Chile</div><div><a href="http://www.gnm.cl/emenendez">www.gnm.cl/emenendez</a><br></div></div></div></div></div></div></div></div></div></div></div></div></div></div></div>