<div dir="ltr">Dear Thomas,<div><br></div><div>thank you for your detailed replies which were, as always, very helpful!</div><div><br></div><div><br></div><div>Best,</div><div>Chris </div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Jul 2, 2018 at 2:57 PM, Dr. Thomas Brumme <span dir="ltr"><<a href="mailto:thomas.brumme@uni-leipzig.de" target="_blank">thomas.brumme@uni-leipzig.de</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Chris,<br>
<br>
adding to my last reply: in the end, it all, of course, depends on what<br>
you want to simulate. If you're aiming for a charged species on a surface<br>
then assume_isolated='2D' might be wrong if you don't increase the slab<br>
(mimicking the surface of a bulk material) such that the electric field<br>
at the bottom does not influence the top. It might be worth to also look<br>
at my implementation of a gate setup (gate=.true.) or to wait till the<br>
author of assume_isolated='2D', Thibault Sohier, releases his implementation<br>
including the gate setup. Gate? Maybe check this paper to see why this<br>
could be useful:<br>
<br>
<a href="https://www.sciencedirect.com/science/article/pii/S0169433218315022" rel="noreferrer" target="_blank">https://www.sciencedirect.com/<wbr>science/article/pii/S016943321<wbr>8315022</a><br>
<br>
As I said, it all depends on the situation you want to simulate. But a<br>
flat potential with the same absolute value on both sides of the system<br>
is rarely correct for a charged system.<div class="HOEnZb"><div class="h5"><br>
<br>
Regards<br>
<br>
Thomas<br>
<br>
Zitat von Christoph Wolf <wolf.christoph@qns.science>:<br>
<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Dear Thomas,<br>
<br>
I played a bit with "assume_isolated='2D'" but I do not think that this can<br>
correct the electrostatic potential of charged sytems (in the sense that<br>
the potential becomes "flat") unless I am interpreting the output<br>
(attached) wrong.<br>
<br>
One way that gives me a flat vacuum potential is to use the M-P scheme but<br>
that only works for cubic systems. After reading about the implementation<br>
in VASP a bit I also think that is what they recommend.<br>
<br>
Best,<br>
Chris<br>
<br>
On Thu, Jun 28, 2018 at 7:04 PM, Dr. Thomas Brumme <<br>
<a href="mailto:thomas.brumme@uni-leipzig.de" target="_blank">thomas.brumme@uni-leipzig.de</a>> wrote:<br>
<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Dear Chris,<br>
<br>
The potential shows the typical quadratic dependence on z since you're<br>
calculating a charged system - there is a homogeneous background charge<br>
since the 3D pbc system is assumed to be neutral. This has nothing to do<br>
with the dipole correction. Depending on what you want to do next it might<br>
be useful to set the flag assume_isolated='2D'<br>
<br>
Regards<br>
<br>
Thomas<br>
<br>
Zitat von Christoph Wolf <wolf.christoph@qns.science>:<br>
<br>
<br>
Dear all,<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<br>
I am still observing something strange in my slab + dipole correction<br>
calculation that I do not fully understand.<br>
<br>
When using dipfield+tefield (eopreg and emaxpos well within the vacuum<br>
region) I encounter a "saggy" electrostatic potential (plot_num=11)<br>
despite<br>
the sawtooth efield potential (plot_num=12) looking as usual. Maybe<br>
someone<br>
can give it a look and confirm if this is due to the excess charge in the<br>
system (this does not happen when running the same system in VASP)?<br>
<br>
I attach input and the plot of the potential for 2 and 4 layers of vacuum<br>
(more vacuum does seem to improve the situation).<br>
<br>
Thank you in advance for your time and assistance!<br>
<br>
Chris<br>
<br>
PS: I am using a QE version with dipole bug fix:<br>
<br>
Program PWSCF v.6.2.2 starts on 25Jun2018 at 10:39:24<br>
<br>
--<br>
Postdoctoral Researcher<br>
Center for Quantum Nanoscience, Institute for Basic Science<br>
Ewha Womans University, Seoul, South Korea<br>
<br>
</blockquote>
<br>
--<br>
Dr. rer. nat. Thomas Brumme<br>
Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry<br>
Leipzig University<br>
Phillipp-Rosenthal-Strasse 31<br>
04103 Leipzig<br>
<br>
Tel: +49 (0)341 97 36456<br>
<br>
email: <a href="mailto:thomas.brumme@uni-leipzig.de" target="_blank">thomas.brumme@uni-leipzig.de</a><br>
<br>
<br>
</blockquote>
<br>
<br>
--<br>
Postdoctoral Researcher<br>
Center for Quantum Nanoscience, Institute for Basic Science<br>
Ewha Womans University, Seoul, South Korea<br>
</blockquote>
<br>
<br>
<br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Postdoctoral Researcher<br>Center for Quantum Nanoscience, Institute for Basic Science<br>Ewha Womans University, Seoul, South Korea<blockquote type="cite" style="font-size:12.8px"><div dir="ltr"><div><div dir="ltr"></div></div></div></blockquote></div></div>
</div>