1 Löwdin and Mulliken population analysis

We have $\left|\phi_{\mu}\right\rangle$ atomic (or atomic-like) orbitals, not necessarily orthonormal, and we want to write KS orbitals for our system: $\left|\psi_{\alpha}\right\rangle$, as sums over said atomic orbitals:

$$
\left|\psi_{\alpha}\right\rangle=\sum_{\mu} c_{\mu}^{(\alpha)}\left|\phi_{\mu}\right\rangle .
$$

The generalized orthonormality relations for KS orbitals is written as:

$$
\left\langle\psi_{\alpha}\right| \hat{S}\left|\psi_{\beta}\right\rangle=\delta_{\alpha \beta}
$$

where \hat{S} is an operator defined in the US PP framework. The charge density $\rho(\mathbf{r})$ is given by

$$
\rho(\mathbf{r})=\sum_{\mu, \nu} P_{\mu \nu}\left(\phi_{\nu}^{*} \hat{S} \phi_{\mu}\right)(\mathbf{r})
$$

where

$$
P_{\mu \nu}=\sum_{\alpha} c_{\mu}^{(\alpha)} c_{\nu}^{(\alpha) *}
$$

define an operator \hat{P}, and

$$
\left(\phi_{\nu}^{*} \hat{S} \phi_{\mu}\right)(\mathbf{r})=\phi_{\nu}^{*}(\mathbf{r}) \phi_{\mu}(\mathbf{r})+\sum_{l m}\left\langle\phi_{\nu} \mid \beta_{l}\right\rangle q_{l m}(\mathbf{r})\left\langle\beta_{m} \mid \phi_{\mu}\right\rangle
$$

where the β 's and q 's are components of the US PP.

1.1 Mulliken population analysis

We write the total number of electrons N as:

$$
N=\int \rho(\mathbf{r}) d \mathbf{r}=\operatorname{Tr} \hat{P} \hat{S}=\sum_{\mu}\left(\sum_{\nu} P_{\mu \nu} S_{\nu \mu}\right) \equiv \sum_{\mu} q_{\mu}
$$

where q_{μ} is the Mulliken charge associated to state μ :

$$
q_{\mu}=\sum_{\nu} \sum_{\alpha} c_{\mu}^{(\alpha)} c_{\nu}^{(\alpha) *} S_{\nu \mu}
$$

and

$$
S_{\nu \mu}=\left\langle\phi_{\nu}\right| \hat{S}\left|\phi_{\mu}\right\rangle=\int \phi_{\nu}^{*}(\mathbf{r}) \phi_{\mu}(\mathbf{r}) d \mathbf{r}+\sum_{l m}\left\langle\phi_{\nu} \mid \beta_{l}\right\rangle Q_{l m}\left\langle\beta_{m} \mid \phi_{\mu}\right\rangle
$$

with

$$
Q_{l m}=\int q_{l m}(\mathbf{r}) d \mathbf{r}
$$

In general, this matrix is not diagonal, even with NC PP. The coefficients $c_{\mu}^{(\alpha)}$ are obtained by inverting the linear system:

$$
\left\langle\phi_{\nu}\right| \hat{S}\left|\psi_{\alpha}\right\rangle=\sum_{\mu} c_{\mu}^{(\alpha)} S_{\nu \mu}
$$

that is

$$
c_{\mu}^{(\alpha)}=\left(\hat{S}^{-1}\right)_{\mu \nu}\left\langle\phi_{\nu}\right| \hat{S}\left|\psi_{\alpha}\right\rangle
$$

and finally

$$
q_{\mu}=\sum_{\alpha \nu}\left\langle\psi_{\alpha}\right| \hat{S}\left|\phi_{\mu}\right\rangle\left(\hat{S}^{-1}\right)_{\mu \nu}\left\langle\phi_{\nu}\right| \hat{S}\left|\psi_{\alpha}\right\rangle .
$$

1.2 Löwdin population analysis

The total number of electrons N can be alternatively written as

$$
N=\operatorname{Tr}\left[\hat{S}^{1 / 2} \hat{P} \hat{S}^{1 / 2}\right]=\sum_{\mu} \tilde{q}_{\mu} .
$$

where \tilde{q}_{μ} is called Löwdin charge associated to state μ. Let us introduce an auxiliary set of atomic orbitals $\tilde{\phi}$ via :

$$
\left|\tilde{\phi}_{\mu}\right\rangle=\sum_{\nu}\left(\hat{S}^{-1 / 2}\right)_{\nu \mu}\left|\phi_{\nu}\right\rangle, \quad\left|\phi_{\mu}\right\rangle=\sum_{\nu}\left(\hat{S}^{1 / 2}\right)_{\nu \mu}\left|\tilde{\phi}_{\nu}\right\rangle,
$$

for which the generalized orthonormality relation

$$
\left\langle\tilde{\phi}_{\mu}\right| \hat{S}\left|\tilde{\phi}_{\nu}\right\rangle=\delta_{\mu \nu}
$$

holds. The KS orbitals for our systems can be rewritten as

$$
\left|\psi_{\alpha}\right\rangle=\sum_{\mu} c_{\mu}^{(\alpha)}\left|\phi_{\mu}\right\rangle=\sum_{\mu} \tilde{c}_{\mu}^{(\alpha)}\left|\tilde{\phi}_{\mu}\right\rangle
$$

where

$$
\tilde{c}_{\mu}^{(\alpha)}=\sum_{\nu}\left(\hat{S}^{1 / 2}\right)_{\nu \mu} c_{\nu}^{(\alpha)} .
$$

By comparison with the above expression of \tilde{q}_{μ} we get

$$
\left.\tilde{q}_{\mu}=\sum_{\alpha}\left|\tilde{c}_{\mu}^{(\alpha)}\right|^{2}=\left|\left\langle\tilde{\phi}_{\mu}\right| \hat{S}\right| \psi_{\alpha}\right\rangle\left.\right|^{2}
$$

Reference: Modern Quantum Chemistry, A. Szabo and N. Ostlund (Dover, NY 1996), p. 153

