<div dir="ltr"><div><div><div><div><br></div>Dear Experts,<br><br></div> I have created a Zr15Nb1 cell containing 15 Zr atoms and 1 Nb atom using the space group P 63/m m c, (space group number 194).<br><br></div> But, when I try to calculate the elastic constant of it using the thermo_pw, I find, pwscf recognizes wrong space group (No. 187). Please find below my input:<br><br>cat > thermo_control << EOF<br> &INPUT_THERMO<br> what='mur_lc_elastic_constants',<br> frozen_ions=.FALSE.<br> /<br>EOF<br><br>cat > <a href="http://zr.elastic.in">zr.elastic.in</a> << EOF<br> &control<br> calculation = 'scf'<br> restart_mode='from_scratch',<br> prefix='zr',<br> verbosity='high',<br> tstress = .true., <br> tprnfor = .true.,<br> pseudo_dir = '$PSEUDO_DIR/',<br> outdir='$TMP_DIR/'<br> /<br> &system<br> ibrav= 4, <br> celldm(1) =12.241644950000000E00, <br> celldm(3) = 1.591850000000000E00, <br> nat= 16, <br> ntyp= 2,<br> ecutwfc=50.0,<br> ecutrho = 180,<br> nr1=90,<br> nr2=90,<br> nr3=144,<br> occupations='smearing', <br> smearing='marzari-vanderbilt', <br> degauss=0.02<br> starting_magnetization(1) = 0.7,<br> use_all_frac = .true. <br> /<br> &electrons<br> conv_thr = 1.0d-9<br> /<br>ATOMIC_SPECIES<br> Zr 91.22 Zr.pz-spn-kjpaw_psl.1.0.0.UPF<br> Nb 92.906 Nb.pz-spn-kjpaw_psl.1.0.0.UPF<br>ATOMIC_POSITIONS (crystal)<br>Zr 0.166666666666667E+00 0.333333333333333E+00 0.125000000000000E+00 <br>Zr 0.833333333333333E+00 0.666666666666667E+00 0.875000000000000E+00 <br>Zr 0.666666666666667E+00 0.833333333333333E+00 0.125000000000000E+00 <br>Zr 0.333333333333333E+00 0.166666666666667E+00 0.875000000000000E+00 <br>Zr 0.166666666666667E+00 0.833333333333333E+00 0.125000000000000E+00 <br>Zr 0.833333333333333E+00 0.166666666666667E+00 0.875000000000000E+00 <br>Zr 0.833333333333333E+00 0.666666666666667E+00 0.375000000000000E+00<br>Zr 0.333333333333333E+00 0.166666666666667E+00 0.375000000000000E+00<br>Zr 0.833333333333333E+00 0.166666666666667E+00 0.375000000000000E+00 <br>Nb 0.166666666666667E+00 0.333333333333333E+00 0.625000000000000E+00 <br>Zr 0.666666666666667E+00 0.833333333333333E+00 0.625000000000000E+00 <br>Zr 0.166666666666667E+00 0.833333333333333E+00 0.625000000000000E+00 <br>Zr 0.666666666666667E+00 0.333333333333333E+00 0.125000000000000E+00 <br>Zr 0.333333333333333E+00 0.666666666666667E+00 0.875000000000000E+00 <br>Zr 0.333333333333333E+00 0.666666666666667E+00 0.375000000000000E+00 <br>Zr 0.666666666666667E+00 0.333333333333333E+00 0.625000000000000E+00<br>K_POINTS AUTOMATIC<br>5 5 3 0 0 0 <br><br>*********************************************************************************************************<br><br></div>Below I have included some part of the output:<br><br><br><div> Starting atomic positions in crystallographic axes:<br><br> site n. atom positions (cryst. coord.)<br> 1 Zr tau( 1) = ( 0.1666667 0.3333333 0.1250000 )<br> 2 Zr tau( 2) = ( 0.8333333 0.6666667 0.8750000 )<br> 3 Zr tau( 3) = ( 0.6666667 0.8333333 0.1250000 )<br> 4 Zr tau( 4) = ( 0.3333333 0.1666667 0.8750000 )<br> 5 Zr tau( 5) = ( 0.1666667 0.8333333 0.1250000 )<br> 6 Zr tau( 6) = ( 0.8333333 0.1666667 0.8750000 )<br> 7 Zr tau( 7) = ( 0.8333333 0.6666667 0.3750000 )<br> 8 Zr tau( 8) = ( 0.3333333 0.1666667 0.3750000 )<br> 9 Zr tau( 9) = ( 0.8333333 0.1666667 0.3750000 )<br> 10 Nb tau( 10) = ( 0.1666667 0.3333333 0.6250000 )<br> 11 Zr tau( 11) = ( 0.6666667 0.8333333 0.6250000 )<br> 12 Zr tau( 12) = ( 0.1666667 0.8333333 0.6250000 )<br> 13 Zr tau( 13) = ( 0.6666667 0.3333333 0.1250000 )<br> 14 Zr tau( 14) = ( 0.3333333 0.6666667 0.8750000 )<br> 15 Zr tau( 15) = ( 0.3333333 0.6666667 0.3750000 )<br> 16 Zr tau( 16) = ( 0.6666667 0.3333333 0.6250000 )<br><br> The energy minimization will require 9 scf calculations<br><br> The point group 107 D_3h (-62m) is compatible with the Bravais lattice.<br><br> The rotation matrices with the order used inside thermo_pw are:<br><br> 12 Sym. Ops. (no inversion) found (10 have fractional translation)<br><br><br> s frac. trans.<br><br> isym = 1 identity <br><br> cryst. s( 1) = ( 1 0 0 )<br> ( 0 1 0 )<br> ( 0 0 1 )<br><br> cart. s( 1) = ( 1.000 0.000 0.000 )<br> ( 0.000 1.000 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> isym = 2 180 deg rotation - cart. axis [0,1,0] <br><br> cryst. s( 2) = ( -1 0 0 )<br> ( 1 1 0 )<br> ( 0 0 -1 )<br><br> cart. s( 2) = ( -1.000 0.000 0.000 )<br> ( 0.000 1.000 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 3 120 deg rotation - cryst. axis [0,0,1] <br><br> cryst. s( 3) = ( 0 1 0 )<br> ( -1 -1 0 )<br> ( 0 0 1 )<br><br> cart. s( 3) = ( -0.500 -0.866 0.000 )<br> ( 0.866 -0.500 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> isym = 4 120 deg rotation - cryst. axis [0,0,-1] <br><br> cryst. s( 4) = ( -1 -1 0 )<br> ( 1 0 0 )<br> ( 0 0 1 )<br><br> cart. s( 4) = ( -0.500 0.866 0.000 )<br> ( -0.866 -0.500 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> isym = 5 180 deg rotation - cryst. axis [1,-1,0] <br><br> cryst. s( 5) = ( 0 -1 0 )<br> ( -1 0 0 )<br> ( 0 0 -1 )<br><br> cart. s( 5) = ( 0.500 -0.866 0.000 )<br> ( -0.866 -0.500 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 6 180 deg rotation - cryst. axis [2,1,0] <br><br> cryst. s( 6) = ( 1 1 0 )<br> ( 0 -1 0 )<br> ( 0 0 -1 )<br><br> cart. s( 6) = ( 0.500 0.866 0.000 )<br> ( 0.866 -0.500 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 7 inv. 180 deg rotation - cart. axis [0,0,1] <br><br> cryst. s( 7) = ( 1 0 0 )<br> ( 0 1 0 )<br> ( 0 0 -1 )<br><br> cart. s( 7) = ( 1.000 0.000 0.000 )<br> ( 0.000 1.000 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 8 inv. 180 deg rotation - cart. axis [1,0,0] <br><br> cryst. s( 8) = ( -1 0 0 )<br> ( 1 1 0 )<br> ( 0 0 1 )<br><br> cart. s( 8) = ( -1.000 0.000 0.000 )<br> ( 0.000 1.000 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> isym = 9 inv. 60 deg rotation - cryst. axis [0,0,1] <br><br> cryst. s( 9) = ( -1 -1 0 )<br> ( 1 0 0 )<br> ( 0 0 -1 )<br><br> cart. s( 9) = ( -0.500 0.866 0.000 )<br> ( -0.866 -0.500 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 10 inv. 60 deg rotation - cryst. axis [0,0,-1] <br><br> cryst. s(10) = ( 0 1 0 )<br> ( -1 -1 0 )<br> ( 0 0 -1 )<br><br> cart. s(10) = ( -0.500 -0.866 0.000 )<br> ( 0.866 -0.500 0.000 )<br> ( 0.000 0.000 -1.000 )<br><br><br> isym = 11 inv. 180 deg rotation - cryst. axis [0,1,0] <br><br> cryst. s(11) = ( 1 1 0 )<br> ( 0 -1 0 )<br> ( 0 0 1 )<br><br> cart. s(11) = ( 0.500 0.866 0.000 )<br> ( 0.866 -0.500 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> isym = 12 inv. 180 deg rotation - cryst. axis [1,1,0] <br><br> cryst. s(12) = ( 0 -1 0 )<br> ( -1 0 0 )<br> ( 0 0 1 )<br><br> cart. s(12) = ( 0.500 -0.866 0.000 )<br> ( -0.866 -0.500 0.000 )<br> ( 0.000 0.000 1.000 )<br><br><br> point group D_3h (-62m)<br> there are 6 classes<br> the character table:<br><br> E 2C3 3C2 s_h 2S3 3s_v <br>A'_1 1.00 1.00 1.00 1.00 1.00 1.00<br>A'_2 1.00 1.00 -1.00 1.00 1.00 -1.00<br>E' 2.00 -1.00 0.00 2.00 -1.00 0.00<br>A''1 1.00 1.00 1.00 -1.00 -1.00 -1.00<br>A''2 1.00 1.00 -1.00 -1.00 -1.00 1.00<br>E'' 2.00 -1.00 0.00 -2.00 1.00 0.00<br><br> the symmetry operations in each class and the name of the first element:<br><br> E 1<br> identity <br> 2C3 3 4<br> 120 deg rotation - cryst. axis [0,0,1] <br> 3C2 2 6 5<br> 180 deg rotation - cart. axis [0,1,0] <br> s_h 7<br> inv. 180 deg rotation - cart. axis [0,0,1] <br> 2S3 9 10<br> inv. 60 deg rotation - cryst. axis [0,0,1] <br> 3s_v 8 11 12<br> inv. 180 deg rotation - cart. axis [1,0,0] <br><br> Space group identification, 12 symmetries:<br><br> Bravais lattice 4 hexagonal <br> Point group number 21 / 107 D_3h (-62m)<br><br> Nonsymmorphic operations not found: All fractional translations vanish<br> Symmetries of the point group in standard order<br><br> 1 E 1<br> 2 i6z 57<br> 3 3z 27<br> 4 i2z 34<br> 5 3-z 28<br> 6 i6-z 58<br> 7 i2x 36<br> 8 2210 30<br> 9 i2110 64<br> 10 2y 3<br> 11 i2010 63<br> 12 21-10 29<br><br><br> Space group nymber 187<br><br> Space group P-6m2 (group number 187).<br> The origin coincides with the ITA tables.<br><br> The Laue class is D_6h(6/mmm)<br><br> In this class the elastic tensor is<br><br> ( c11 c12 c13 . . . )<br> ( c12 c11 c13 . . . )<br> ( c13 c13 c33 . . . )<br> ( . . . c44 . . )<br> ( . . . . c44 . )<br> ( . . . . . X )<br> X=(c11-c12)/2<br><br> It requires three strains: e1, e3, and e4<br> for a total of 12 scf calculations<br><br>*****************************************************************************************************<br><br></div><div>It will be great if you can help me in solving this problem,<br><br></div><div>Thanks,<br></div><div>Best regards,<br></div><div>Krishnendu<br clear="all"></div><div><div><div><div><br>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div>Dr. Krishnendu Mukherjee,</div></div><div><br></div><div>Principal Scientist,</div><div>CSIR-NML,</div><div>Jamshedpur.</div></div></div></div></div></div></div></div></div>
</div></div></div></div></div>