<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><meta http-equiv=Content-Type content="text/html; charset=utf-8"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:DengXian;
panose-1:2 1 6 0 3 1 1 1 1 1;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"\@DengXian";
panose-1:2 1 6 0 3 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
.MsoChpDefault
{mso-style-type:export-only;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style></head><body lang=EN-US link=blue vlink="#954F72"><div class=WordSection1><p class=MsoNormal>Dear Quantum Espresso users,</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>I just finished the phonon calculation at Gamma point of a material with T_h symmetry. But it seems that the code could not determine the mode symmetry as shown in the output file:</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>###############################################################</p><p class=MsoNormal> Mode symmetry, T_h (m-3) point group:</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal> freq ( 1 - 3) = 9.1 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 4 - 6) = 14.5 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 7 - 9) = 48.9 [cm-1] --> T_g R</p><p class=MsoNormal> freq ( 10 - 12) = 81.9 [cm-1] --> T_g R</p><p class=MsoNormal> freq ( 13 - 15) = 100.1 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 16 - 16) = 254.2 [cm-1] --> ?</p><p class=MsoNormal> freq ( 17 - 17) = 254.2 [cm-1] --> ?</p><p class=MsoNormal> freq ( 18 - 20) = 265.1 [cm-1] --> T_g R</p><p class=MsoNormal> freq ( 21 - 23) = 347.7 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 24 - 26) = 349.8 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 27 - 27) = 350.5 [cm-1] --> A_u</p><p class=MsoNormal> freq ( 28 - 28) = 394.8 [cm-1] --> ?</p><p class=MsoNormal> freq ( 29 - 29) = 394.8 [cm-1] --> ?</p><p class=MsoNormal> freq ( 30 - 32) = 395.2 [cm-1] --> T_u I</p><p class=MsoNormal> freq ( 33 - 35) = 396.8 [cm-1] --> T_g R</p><p class=MsoNormal> freq ( 36 - 36) = 398.8 [cm-1] --> ?</p><p class=MsoNormal> freq ( 37 - 37) = 398.8 [cm-1] --> ?</p><p class=MsoNormal> freq ( 38 - 40) = 479.4 [cm-1] --> T_g R </p><p class=MsoNormal>…….</p><p class=MsoNormal>…….</p><p class=MsoNormal>###############################################################</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>As from above, the code could notice the point group is T_h. However, for the two-fold modes (16 and 17, 28 and 29, 36 and 37, actually, all the two-fold modes have the same problem), which seem to be E_g (or E_u) mode, there is no symmetry information. In stead, there is only two “?” marks. </p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Any hint for this problem could be very welcome.</p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Best regards</p><p class=MsoNormal>Zhishuo Huang</p><p class=MsoNormal><o:p> </o:p></p></div></body></html>